Skip to main content
Log in

Chlorinated Perylene Monoimide Monoanhydrate Synthesized via Hydrolysis and Its Application in Organic Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Perylene-3,4-(dicarboxylic monoimide)-9,10-(dicarboxylic monoanhydrate) (PIA) is one key intermediate to construct functionalized perylene diimides (PDIs) for various applications. However, the difficulty in synthesizing chlorinated PIA hinders the study of chlorinated PDI-based materials. Although chlorination has been widely used to modify the properties of organic semiconductors. We successfully synthesize chlorinated PIA via a simple hydrolysis reaction using LiOH as the base, then a PDI dimer connected at the imide position, N-di-PDI-4Cl, is synthesized as an application example of chlorinated PIA. The heavily chlorinated PDI dimer exhibits deeper energy levels, slightly blue-shifted UV-Vis absorption compared to the non-chlorinated analogue. In addition, the photovoltaic performance of N-di-PDI-4Cl is characterized. This study paves one easy way to synthesize chlorinated PIA and its more delicate derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Würthner, F.; Saha-Möller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 2016, 116, 962–1052.

    Article  PubMed  Google Scholar 

  2. Liang, N.; Meng, D.; Wang, Z. Giant rylene imide-based electron acceptors for organic photovoltaics. Acc. Chem. Res. 2021, 54, 961–975.

    Article  CAS  PubMed  Google Scholar 

  3. Bao, H. Y.; Yang, Z. F.; Zhao, Y. J.; Gao, X.; Tong, X. Z.; Wang, Y. N.; Sun, F. B.; Gao, J. H.; Li, W. W.; Liu, Z. T. Chlorinated effects of double-cable conjugated polymers on the photovoltaic performance in single-component organic solar cells. Chinese J. Polym. Sci. 2023, 41, 187–193.

    Article  CAS  Google Scholar 

  4. Gao, X.; Jing, W.; Wang, Y.; Xu, X.; Zhang, L.; Chen, Z.; Wen, J.; Gao, J.; Peng, Q.; Liu, Z. Efficient perylene-diimides-based nonfullerene acceptors with triazine cores synthesized via a simple nucleophilic substitution reaction. Sci. China Mater. 2023, https://doi.org/10.1007/s40843-022-2339-9.

  5. Wang, J.; Zhan, X. Rylene diimide electron acceptors for organic solar cells. Trends Chem. 2019, 1, 869–881.

    Article  CAS  Google Scholar 

  6. You, X.; Hu, J.; Wu, M.; Huang, H.; Shao, G.; Zhang, J.; Wu, D.; Xia, J. Isomeric effect on optoelectronic properties and photovoltaic performance of anthraquinone-core perylene diimide (PDI) and helical PDI dimers. Chemistry 2019, 25, 12137–12144.

    Article  CAS  PubMed  Google Scholar 

  7. Wu, M.; Yi, J.-P.; Chen, L.; He, G.; Chen, F.; Sfeir, M. Y.; Xia, J. Novel star-shaped helical perylene diimide electron acceptors for efficient additive-free nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 27894–27901.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, M.; Xia, P.; Huang, H.; Lin, Z.; You, X.; Wang, K.; Lu, H.; Wu, D.; Xia, J. Π-extension improves the photovoltaic performance: a helical perylene diimide oligomer based three-dimensional non-fullerene acceptor. Mater. Chem. Front. 2019, 3, 2414–2420.

    Article  CAS  Google Scholar 

  9. Wang, L.; Shen, H.; You, X.; Wu, D.; Xia, J. The synthesis of asymmetric perylene diimide acceptors and their optoelectronic properties studies. Eur. J. Org. Chem. 2022, 2022, e202101554.

    Article  CAS  Google Scholar 

  10. Wang, K.; Xia, P.; Wang, K.; You, X.; Wu, M.; Huang, H.; Wu, D.; Xia, J. Π-extension, selenium incorporation, and trimerization: “three in one” for efficient perylene diimide oligomer-based organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 9528–9536.

    Article  CAS  PubMed  Google Scholar 

  11. Hu, J.; Liu, X.; Wang, K.; Wu, M.; Huang, H.; Wu, D.; Xia, J. A perylene diimide electron acceptor with a triphenylamine core: promoting photovoltaic performance via hot spin-coating. J. Mater. Chem. C 2020, 8, 2135–2141.

    Article  CAS  Google Scholar 

  12. Deng, M.; Ji, Z.; Xu, X.; Yu, L.; Peng, Q. Benzotriazacycle cored perylene diimide non-fullerene acceptors for high-performance organic solar cells. Curr. Appl. Mater. 2022, 1, 44–52.

    Google Scholar 

  13. Chen, S.; Meng, D.; Huang, J.; Liang, N.; Li, Y.; Liu, F.; Yan, H.; Wang, Z. Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 2021, 3, 78–84.

    Article  CAS  Google Scholar 

  14. Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z.; Würthner, F. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. J. Am. Chem. Soc. 2009, 131, 6215–6228.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Z.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.; Würthner, F. Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties. ChemPhysChem 2004, 5, 137–140.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; Könemann, M.; Bao, Z.; Würthner, F. Core-fluorinated perylene bisimide dyes: air stable n-channel organic semiconductors for thin film transistors with exceptionally high on-to-off current ratios. Adv. Mater. 2007, 19, 3692–3695.

    Article  CAS  Google Scholar 

  17. Gao, X.; Chen, Y.; Gu, C.; Wen, J.; Peng, X.; Liu, J.; Zhang, Z.; Zhang, Q.; Liu, Z.; Wang, C. Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides). J. Mater. Chem. A 2020, 8, 19283–19289.

    Article  CAS  Google Scholar 

  18. Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C. Polymerization increasing the capacitive charge storage for better rate performance: a case study of electrodes in aqueous sodium-ion capacitors. Battery Energy 2022, 1, 20220031.

    Article  CAS  Google Scholar 

  19. Sharma, P.; Damien, D.; Nagarajan, K.; Shaijumon, M. M.; Hariharan, M. Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. J. Phys. Chem. Lett. 2013, 4, 3192–3197.

    Article  CAS  Google Scholar 

  20. Song, Z.; Zhan, H.; Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 2010, 49, 8444–8.

    Article  CAS  Google Scholar 

  21. Nowak-Król, A.; Würthner, F. Progress in the synthesis of perylene bisimide dyes. Org. Chem. Front. 2019, 6, 1272–1318.

    Article  Google Scholar 

  22. Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X. Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 2016, 4, 17604–17622.

    Article  CAS  Google Scholar 

  23. Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, 14, 1564–1579.

    Article  Google Scholar 

  24. Ye, L.; Sun, K.; Jiang, W.; Zhang, S.; Zhao, W.; Yao, H.; Wang, Z.; Hou, J. Enhanced efficiency in fullerene-free polymer solar cell by incorporating fine-designed donor and acceptor materials. ACS Appl. Mater. Interfaces 2015, 7, 9274–9280.

    Article  CAS  PubMed  Google Scholar 

  25. Shivanna, R.; Shoaee, S.; Dimitrov, S.; Kandappa, S. K.; Rajaram, S.; Durrant, J. R.; Narayan, K. S. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energ. Environ. Sci. 2014, 7, 435–441.

    Article  CAS  Google Scholar 

  26. Schmidt, R.; Osswald, P.; Könemann, M.; Würthner, F. Synthetic routes to core-fluorinated perylene bisimide dyes and their properties. Z. Naturforsch. B 2009, 64, 735–746.

    Article  CAS  Google Scholar 

  27. Sengupta, S.; Dubey, R. K.; Hoek, R. W. M.; van Eeden, S. P. P.; Gunbaş, D. D.; Grozema, F. C.; Sudhölter, E. J. R.; Jager, W. F. Synthesis of regioisomerically pure 1,7-dibromoperylene-3,4,9,10-tetracarboxylic acid derivatives. J. Org. Chem. 2014, 79, 6655–6662.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, R.; Shi, Z.; Zhang, C.; Zhang, A.; Chen, J.; Guo, W.; Sun, Z. Facile synthesis and controllable bromination of asymmetrical intermediates of perylene monoanhydride/monoimide diester. Dyes Pigments 2013, 98, 450–458.

    Article  CAS  Google Scholar 

  29. Rajaram, S.; Shivanna, R.; Kandappa, S. K.; Narayan, K. S. Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells. J. Phys. Chem. Lett. 2012, 3, 2405–2408.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, N.; Sun, K.; Zheng, Z.; Yao, H.; Gao, G.; Meng, X.; Wang, Z.; Ma, W.; Hou, J. Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7%. Adv. Energy Mater. 2016, 6, 1600060.

    Article  Google Scholar 

  31. Liu, Z.; Wu, Y.; Jiang, H.; Zhang, L.; Zeng, D.; Zhang, X.; Zhang, Q.; Gao, X. A new nonfullerene acceptor based on perylene diimides for organic solar cells. J. Mater. Sci. Mater. El. 2018, 29, 10362–10368.

    Article  CAS  Google Scholar 

  32. Liu, Z.; Zhang, L.; Shao, M.; Wu, Y.; Zeng, D.; Cai, X.; Duan, J.; Zhang, X.; Gao, X. Fine-tuning the quasi-3D geometry: enabling efficient nonfullerene organic solar cells based on perylene diimides. ACS Appl. Mater. Interfaces 2018, 10, 762–768.

    Article  CAS  PubMed  Google Scholar 

  33. Gao, X.; Xu, M. C.; Zeng, D.; Dong, J.; Zhang, Y. M.; Wen, J.; Wang, C.; Liu, Z.; Shao, M. Comparison study of the chlorination positions in wide band gap donor polymers. J. Phys. Chem. C 2020, 124, 24592–24600.

    Article  CAS  Google Scholar 

  34. Gao, X.; Yu, K.; Zhao, Y.; Zhang, T.; Wen, J.; Liu, Z.; Liu, Z.; Ye, G.; Gao, J.; Ge, Z.; Liu, Z. Effects of subtle change in side chains on the photovoltaic performance of small molecular donors for solar cells. Chin. Chem. Lett. 2022, 33, 4659–4663.

    Article  CAS  Google Scholar 

  35. Liu, Z.; Gao, Y.; Dong, J.; Yang, M.; Liu, M.; Zhang, Y.; Wen, J.; Ma, H.; Gao, X.; Chen, W.; Shao, M. Chlorinated wide-bandgap donor polymer enabling annealing free nonfullerene solar cells with the efficiency of 11.5%. J. Phys. Chem. Lett. 2018, 9, 6955–6962.

    Article  CAS  PubMed  Google Scholar 

  36. Yao, H.; Wang, J.; Xu, Y.; Zhang, S.; Hou, J. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res. 2020, 53, 822–832.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868.

    Article  Google Scholar 

  38. Li, J.-N.; Cui, M.; Dong, J.; Jing, W.; Bao, J.; Liu, Z.; Ma, Z.; Gao, X. Voltage loss analysis of novel non-fullerene acceptors with chlorinated non-conjugated thienyl chains. Dyes Pigments 2021, 188, 109162.

    Article  CAS  Google Scholar 

  39. Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater. Chem. Front. 2017, 1, 1389–1395.

    Article  CAS  Google Scholar 

  40. Gao, X.; Zhan, T.; Zhang, X.; Dong, J.; Bao, J.; Wen, J.; Cai, P.; Liu, Z. Chlorination converting one efficient polymeric donor to an effective electron acceptor in organic solar cells. Nano Select 2021, 3, 91–97.

    Article  Google Scholar 

  41. Gao, J.; Zhu, X.; Bao, H.; Feng, J.; Gao, X.; Liu, Z.; Ge, Z. Latest progress on fully non-fused electron acceptors for high-performance organic solar cells. Chin. Chem. Lett. 2022, https://doi.org/10.1016/j.cclet.2022.107968107968.

  42. Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; Li, W. “Double-cable” conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J. Am. Chem. Soc. 2017, 139, 18647–18656.

    Article  CAS  PubMed  Google Scholar 

  43. Ding, K.; Wang, Y.; Shan, T.; Xu, J.; Bao, Q.; Liu, F.; Zhong, H. Propeller-like acceptors with difluoride perylene diimides for organic solar cells. Org. Electron. 2020, 78, 105569.

    Article  CAS  Google Scholar 

  44. Zhang, L.; Xia, Z.; Wen, J.; Gao, J.; Gao, X.; Liu, Z. Fluorinated perylene diimide dimer for organic solar cells as non-fullerene acceptor. Asian J. Org. Chem. 2021, 10, 3374–3379.

    Article  CAS  Google Scholar 

  45. Debije, M. G.; Chen, Z.; Piris, J.; Neder, R. B.; Watson, M. M.; Müllen, K.; Würthner, F. Dramatic increase in charge carrier lifetime in a liquid crystalline perylene bisimide derivative upon bay substitution with chlorine. J. Mater. Chem. 2005, 15, 1270–1276.

    Article  CAS  Google Scholar 

  46. Osswald, P.; Würthner, F. Effects of bay substituents on the racemization barriers of perylene bisimides: resolution of atropo-enantiomers. J. Am. Chem. Soc. 2007, 129, 14319–14326.

    Article  CAS  PubMed  Google Scholar 

  47. Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766–4771.

    Article  CAS  PubMed  Google Scholar 

  48. Ma, H.; Troisi, A. Modulating the exciton dissociation rate by up to more than two orders of magnitude by controlling the alignment of LUMO+1 in organic photovoltaics. J. Phys. Chem. C 2014, 118, 27272–27280.

    Article  CAS  Google Scholar 

  49. Wu, C. H.; Chueh, C. C.; Xi, Y. Y.; Zhong, H.-L.; Gao, G. P.; Wang, Z. H.; Pozzo, L. D.; Wen, T. C.; Jen, A. K. Y. Influence of molecular geometry of perylene diimide dimers and polymers on bulk heterojunction morphology toward high-performance nonfullerene polymer solar cells. Adv. Funct. Mater. 2015, 25, 5326–5332.

    Article  CAS  Google Scholar 

  50. Li, G.; Wang, S.; Li, D.; Liu, T.; Yan, C.; Li, J.; Yang, W.; Luo, Z.; Ma, R.; Wang, X.; Cui, G.; Wang, Y.; Ma, W.; Huo, L.; Chen, K.; Yan, H.; Tang, B. Chalcogen-fused perylene diimides-based nonfullerene acceptors for high-performance organic solar cells: insight into the effect of O, S, and Se. Solar RRL 2020, 4, 1900453.

    Article  CAS  Google Scholar 

  51. Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

    Article  Google Scholar 

  52. Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F. Chlorinaton strategy on polymer donors toward efficient solar conversions. J. Energy Chem. 2019, 39, 208–216.

    Article  Google Scholar 

  53. Kini, G. P.; Jeon, S. J.; Moon, D. K. Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review. Adv. Mater. 2020, 32, e1906175.

    Article  PubMed  Google Scholar 

  54. Gao, X.; Tong, X.; Xu, M.; Zhang, L.; Wang, Y.; Liu, Z.; Yang, L.; Gao, J.; Shao, M.; Liu, Z. Chlorinated narrow bandgap polymer suppresses non-radiative recombination energy loss enabling perylene diimides-based organic solar cells exceeding 10% efficiency. Small 2023, https://doi.org/10.1002/smll.202208217.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973169, 51703172 and 52273195), Key R&D program of Hubei Province (No. 2021BAA014), the Natural Science Foundation of Hubei Province (No. 2022CFB097) the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2020WNLOKF015), and the science foundation of Wuhan Institute of Technology (No. K202025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Gao, Di Wu or Zhi-Tian Liu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, JH., Zhang, LH., Shen, H. et al. Chlorinated Perylene Monoimide Monoanhydrate Synthesized via Hydrolysis and Its Application in Organic Solar Cells. Chin J Polym Sci 41, 1686–1694 (2023). https://doi.org/10.1007/s10118-023-2984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2984-5

Keywords

Navigation