Skip to main content
Log in

The Effect of Topologies and Refilling Short-chain PEG on Protein Adsorption

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

PEGylation is the gold standard for constructing protein resistance surfaces. Herein, grafting mPEG-SH and SH-PEG-SH with varied molecular weights (Mw=5K, 10K, and 20K) on a gold chip, and the subsequent lysozyme adsorptions of the PEG layers are evaluated using quartz-crystal microbalance based on dissipation (QCM-D). The lysozyme resistance depends on the features of grafting density and chain conformation, i.e., linear and looped conformation. However, long-chain PEG (Mw≥10K) is insufficient to form a dense layer to resist protein due to large steric hindrances. Short-chain PEG (Mw=1K) with linear and looped structures is used to refill onto the long-chain PEG layer to increase the grafting density of PEGs and improve protein resistance. The refilling process and the subsequent protein adsorption depend on conformation rather than the density of the long-chain PEG substrate. Notably, the long-chain PEG looped substrates significantly improve protein resistance, attributing to the high viscoelasticity of the looped substrate and an increase in grafting density after refilling. Thus, refilling short-chain PEG improves protein resistance and the substrate conformation-dependence gives insight into the impact of topology, providing new ideas for how to increase chain density and select suitable topology to resist protein adsorption and demonstrating a potential application in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brash, J. L.; Horbett, T. A.; Latour, R. A.; Tengvall, P. The blood compatibility challenge. Part 2: protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019, 94, 11–24.

    Article  CAS  PubMed Central  Google Scholar 

  2. Bochenek, M.; Oleszko-Torbus, N.; Wałach, W.; Lipowska-Kur, D.; Dworak, A.; Utrata-Wesołek, A. Polyglycidol of linear or branched architecture immobilized on a solid support for biomedical applications. Polym. Rev. 2020, 60, 717–767.

    Article  CAS  Google Scholar 

  3. Mevo, S. I. U.; Ashrafudoulla, M.; Furkanur Rahaman Mizan, M.; Park, S. H.; Ha, S. D. Promising strategies to control persistent enemies: some new technologies to combat biofilm in the food industry—a review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5938–5964.

    Article  PubMed  Google Scholar 

  4. Ye, Z.; Zhang, P.; Zhang, J.; Deng, L.; Zhang, J.; Lin, C.; Guo, R.; Dong, A. Novel dual-functional coating with underwater self-healing and anti-protein-fouling properties by combining two kinds of microcapsules and a zwitterionic copolymer. Prog. Org. Coat. 2019, 127, 211–221.

    Article  CAS  Google Scholar 

  5. Sabaté del Río, J.; Henry, O. Y.; Jolly, P.; Ingber, D. E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019, 14, 1143–1149.

    Article  PubMed  Google Scholar 

  6. Ahsan, S. M.; Rao, C. M.; Ahmad, M. Nanoparticle-protein interaction: the significance and role of protein corona. Mol. Cell. Toxicol. 2018, 175–198.

  7. Hedayati, M.; Marruecos, D. F.; Krapf, D.; Kaar, J. L.; Kipper, M. J. Protein adsorption measurements on low fouling and ultralow fouling surfaces: a critical comparison of surface characterization techniques. Acta Biomater. 2020, 102, 169–180.

    Article  CAS  PubMed  Google Scholar 

  8. Cerchier, P.; Pezzato, L.; Gennari, C.; Moschin, E.; Moro, I.; Dabalà, M. PEO coating containing copper: A promising anticorrosive and antifouling coating for seawater application of AA 7075. Surf. Coat. Technol. 2020, 393, 125774.

    Article  CAS  Google Scholar 

  9. Guo, L. L.; Cheng, Y. F.; Ren, X.; Gopinath, K.; Lu, Z. S.; Li, C. M.; Xu, L. Q. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on titanium surface. Colloids Surf. B: Biointerfaces 2021, 200, 111592.

    Article  CAS  PubMed  Google Scholar 

  10. Shin, E.; Lim, C.; Kang, U. J.; Kim, M.; Park, J.; Kim, D.; Choi, W.; Hong, J.; Baig, C.; Lee, D. W.; Kim, B. S. Mussel-inspired copolyether loop with superior antifouling behavior. Macromolecules 2020, 53, 3551–3562.

    Article  CAS  Google Scholar 

  11. Aghajani, M.; Esmaeili, F. Anti-biofouling assembly strategies for protein & cell repellent surfaces: a mini-review. J. Biomater. Sci., Polym. Ed. 2021, 32, 1770–1789.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, K. X.; Huang, H.; Hung, H. C.; Leng, C.; Wei, S.; Crisci, R.; Jiang, S. Y.; Chen, Z. Strong hydration at the poly(ethylene glycol) brush/albumin solution interface. Langmuir 2020, 36, 2030–2036.

    Article  CAS  PubMed  Google Scholar 

  13. Hafeez, A.; Karim, Z. A.; Ismail, A. F.; Samavati, A.; Said, K. A. M.; Selambakkannu, S. Functionalized boron nitride composite ultrafiltration membrane for dye removal from aqueous solution. J. Membr. Sci. 2020, 612, 118473.

    Article  CAS  Google Scholar 

  14. Wang, X.; Bowman, J.; Tu, S.; Nykypanchuk, D.; Kuksenok, O.; Minko, S. Polyethylene glycol Crowder’s effect on enzyme aggregation, thermal stability, and residual catalytic activity. Langmuir 2021, 37, 8474–8485.

    Article  CAS  PubMed  Google Scholar 

  15. Lu, J.; Xue, Y.; Shi, R.; Kang, J.; Zhao, C. Y.; Zhang, N. N.; Wang, C. Y.; Lu, Z. Y.; Liu, K. A non-sacrificial method for the quantification of poly(ethylene glycol) grafting density on gold nanoparticles for applications in nanomedicine. Chem. Sci. 2019, 10, 2067–2074.

    Article  CAS  PubMed  Google Scholar 

  16. Ortiz, R.; Olsen, S.; Thormann, E. Salt-induced control of the grafting density in poly(ethylene glycol) brush layers by a grafting-to approach. Langmuir 2018, 34, 4455–4464.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H.; Zhang, Z.; Chen, J.; Lian, C.; Han, X.; Liu, H. Conformation-dominated surface antifouling and aqueous lubrication. Colloids Surf. B: Biointerfaces 2022, 214, 112452.

    Article  CAS  PubMed  Google Scholar 

  18. Unsworth, L.; Sheardown, H.; Brash, J. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir 2005, 21, 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  19. Unsworth, L. D.; Tun, Z.; Sheardown, H.; Brash, J. L. In situ neutron reflectometry investigation of gold-chemisorbed PEO layers of varying chain density: relationship of layer structure to protein resistance. J. Colloid Interface Sci. 2006, 296, 520–526.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. X.; Zhang, H. D. Structures and surface states of polymer brushes in good solvents: effects of surface interactions. Chinese J. Polym. Sci. 2018, 36, 1047–1054.

    Article  CAS  Google Scholar 

  21. Penna, M.; Ley, K. J.; Belessiotis-Richards, A.; MacLaughlin, S.; Winkler, D. A.; Yarovsky, I. Hydration and dynamics of ligands determine the antifouling capacity of functionalized surfaces. J. Phys. Chem. C 2019, 123, 30360–30372.

    Article  CAS  Google Scholar 

  22. Jeon, S.; Lee, J.; Andrade, J.; De Gennes, P. Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 1991, 142, 149–158.

    Article  CAS  Google Scholar 

  23. Benhabbour, S. R.; Sheardown, H.; Adronov, A. Protein resistance of PEG-functionalized dendronized surfaces: effect of PEG molecular weight and dendron generation. Macromolecules 2008, 41, 4817–4823.

    Article  CAS  Google Scholar 

  24. Chen, Q.; Yu, S.; Zhang, D.; Zhang, W.; Zhang, H.; Zou, J.; Mao, Z.; Yuan, Y.; Gao, C.; Liu, R. Impact of antifouling PEG layer on the performance of functional peptides in regulating cell behaviors. J. Am. Chem. Soc. 2019, 141, 16772–16780.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, H.; Dardir, K.; Lee, K. B.; Fabris, L. Impact of protein corona in nanoflare-based biomolecular detection and quantification. Bioconjugate Chem. 2019, 30, 2555–2562.

    Article  Google Scholar 

  26. Dai, Q.; Walkey, C.; Chan, W. C. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. 2014, 53, 5093–5096.

    Article  CAS  Google Scholar 

  27. Du, Y.; Jin, J.; Jiang, W. A study of polyethylene glycol backfilling for enhancing target recognition using QCM-D and DPI. J. Mater. Chem. B 2018, 6, 6217–6224.

    Article  CAS  PubMed  Google Scholar 

  28. Hu, Y.; Jin, J.; Han, Y.; Yin, J.; Jiang, W.; Liang, H. Study of fibrinogen adsorption on poly(ethylene glycol)-modified surfaces using a quartz crystal microbalance with dissipation and a dual polarization interferometry. RSC Adv. 2014, 4, 7716–7724.

    Article  CAS  Google Scholar 

  29. Jin, J.; Han, Y.; Zhang, C.; Liu, J.; Jiang, W.; Yin, J.; Liang, H. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: a combined study using QCM-D and DPI. Colloids Surf., B 2015, 136, 838–844.

    Article  CAS  Google Scholar 

  30. Li, B.; Yu, B.; Wang, X. L.; Guo, F.; Zhou, F. Correlation between conformation change of polyelectrolyte brushes and lubrication. Chinese J. Polym. Sci. 2015, 33, 163–172.

    Article  CAS  Google Scholar 

  31. Han, Y.; Ma, J.; Hu, Y.; Jin, J.; Jiang, W. Effect of end-grafted polymer conformation on protein resistance. Langmuir 2018, 34, 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  32. Du, Y.; Jin, J.; Liang, H.; Jiang, W. Structural and physicochemical properties and biocompatibility of linear and looped polymer-capped gold nanoparticles. Langmuir 2019, 35, 8316–8324.

    CAS  PubMed  Google Scholar 

  33. Lv, J.; Jin, J.; Han, Y.; Jiang, W. Effect of end-grafted PEG conformation on the hemocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene). J. Biomater. Sci., Polym. Ed. 2019, 30, 1670–1685.

    Article  CAS  PubMed  Google Scholar 

  34. Alexander, S. Adsorption of chain molecules with a polar head a scaling description. J. Phys. I 1977, 38, 983–987.

    Article  CAS  Google Scholar 

  35. Jin, J.; Hu, Y.; Han, Y.; Jiang, W. Modified surface by poly(ethylene glycol) with looped conformation and its superior anticoagulant property. Sci. Sin. Chim. 2018, 48, 972–980.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52073276), Changchun Science and Technology Development Program (No. 21ZY07), and the Innovation and Entrepreneurship Talent Project of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Jin or Wei Jiang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, JN., Jin, J. et al. The Effect of Topologies and Refilling Short-chain PEG on Protein Adsorption. Chin J Polym Sci 41, 1879–1888 (2023). https://doi.org/10.1007/s10118-023-2971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2971-x

Keywords

Navigation