Skip to main content
Log in

Inkjet-Printed Organic Solar Cells and Perovskite Solar Cells: Progress, Challenges, and Prospect

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In recent years, the power conversion efficiency of organic solar cells (OSCs) and perovskite (PVSCs) has increased to over 19% and 25%, respectively. Meanwhile, the long-term stability of OSCs and PVSCs was also significantly improved with a better understanding of the degradation mechanism and the improvement of materials, morphology, and interface stability. As both the efficiency and lifetime of solar cells are approaching the commercialization limit, fabrication methods for large-area OSCs and PVSCs that can be directly transferred from lab to fab become essential to promote the industrialization of OSCs and PVSCs. Compared with the coating methods, inkjet printing is a mature industrial technology with the advantages of random digital patterning, excellent precision and fast printing speed, which is considered to have great potential in solar cell fabrication. Many efforts have been devoted to developing inkjet-printed OSCs and PVSCs, and much progress has been achieved in the last few years. In this review, we first introduced the working principle of inkjet printing, the rheology requirements of inks, and the behaviors of the droplets. We then summarized the recent research progresses of the inkjet-printed OSCs and PVSCs to facilitate knowledge transfer between the two technologies. In the end, we gave a perspective on inkjet-printed OSCs and PVSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Organic ternary solar cells: A review. Adv. Mater. 2013, 25, 4245–4266.

    Article  CAS  PubMed  Google Scholar 

  2. Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731.

    Article  CAS  Google Scholar 

  4. Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.

    Article  CAS  Google Scholar 

  5. Kearns, D.; Calvin, M. Photovoltaic effect and photoconductivity in laminated organic systems. J. Phys. Chem. Lett. 1958, 29, 950–951.

    CAS  Google Scholar 

  6. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185.

    Article  CAS  Google Scholar 

  7. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  8. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    Article  CAS  Google Scholar 

  9. Bi, P.; Zhang, S.; Ren, J.; Chen, Z.; Zheng, Z.; Cui, Y.; Wang, J.; Wang, S.; Zhang, T.; Li, J.; Xu, Y.; Qin, J.; An, C.; Ma, W.; Hao, X.; Hou, J. A high-performance nonfused wide-bandgap acceptor for versatile photovoltaic applications. Adv. Mater. 2022, 34, 2108090.

    Article  CAS  Google Scholar 

  10. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  13. Peng, J.; Kremer, F.; Walter, D.; Wu, Y.; Ji, Y.; Xiang, J.; Liu, W.; Duong, T.; Shen, H.; Lu, T.; Brink, F.; Zhong, D.; Li, L.; Lee Cheong Lem, O.; Liu, Y.; Weber, K. J.; White, T. P.; Catchpole, K. R. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 2022, 601, 573–578.

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P.; Bulović, V.; Shin, S. S.; Bawendi, M. G.; Seo, J. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X.; Huang, R.; Han, Y.; Zha, W.; Fang, J.; Lin, J.; Luo, Q.; Chen, Z.; Ma, C. Q. Balancing the molecular aggregation and vertical phase separation in the polymer: Nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet-printed active layer. Adv. Energy Mater. 2022, 12, 2200044.

    Article  CAS  Google Scholar 

  16. Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B. S.; Hernandez-Sosa, G.; Paetzold, U.W. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 2020, 10, 1903184.

    Article  CAS  Google Scholar 

  17. Yang, X.; Lin, Y.; Wu, T.; Yan, Z.; Chen, Z.; Kuo, H. C.; Zhang, R. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electr. Adv. 2022, 5, 210123–210123.

    Article  CAS  Google Scholar 

  18. Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 2017, 8, 1327.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han, G. D.; Bae, K.; Kang, E. H.; Choi, H. J.; Shim, J. H. Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett. 2020, 5, 1586–1592.

    Article  CAS  Google Scholar 

  20. Sandler, N.; Maattanen, A.; Ihalainen, P.; Kronberg, L.; Meierjohann, A.; Viitala, T.; Peltonen, J. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J. Pharm. Sci. 2011, 100, 3386–3395.

    Article  CAS  PubMed  Google Scholar 

  21. Karunakaran, S. K.; Arumugam, G. M.; Yang, W.; Ge, S.; Khan, S. N.; Lin, X.; Yang, G. Recent progress in inkjet-printed solar cells. J. Mater. Chem. A 2019, 7, 13873–13902.

    Article  CAS  Google Scholar 

  22. Ganesan, S.; Mehta, S.; Gupta, D. Fully printed organic solar cells-a review of techniques, challenges and their solutions. Opto-Electron. Rev. 2019, 27, 298–320.

    Article  Google Scholar 

  23. Daly, R.; Harrington, T. S.; Martin, G. D.; Hutchings, I. M. Inkjet printing for pharmaceutics—a review of research and manufacturing. Int. J. Pharm. 2015, 494, 554–567.

    Article  CAS  PubMed  Google Scholar 

  24. Wijshoff, H. The dynamics of the piezo inkjet printhead operation. Phys. Rep. 2010, 491, 77–177.

    Article  CAS  Google Scholar 

  25. Fromm, J. E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 1984, 28, 322–333.

    Article  Google Scholar 

  26. Sumaiya, S.; Kardel, K.; El Shahat, A. Organic solar cell by inkjet printing—an overview. Technologies 2017, 5, 53.

    Article  Google Scholar 

  27. Reis, N.; Ainsley, C.; Derby, B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 2005, 97, 094903.

    Article  Google Scholar 

  28. Stow, C. D.; Hadfield, M. G. An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 1981, 373, 419–441.

    Article  Google Scholar 

  29. Li, J.; Rossignol, F.; Macdonald, J. Inkjet printing for biosensor fabrication: Combining chemistry and technology for advanced manufacturing. Lab Chip 2015, 15, 2538–2558.

    Article  CAS  PubMed  Google Scholar 

  30. Corzo, D.; Almasabi, K.; Bihar, E.; Macphee, S.; Rosas-Villalva, D.; Gasparini, N.; Inal, S.; Baran, D. Digital inkjet printing of high-efficiency large-area nonfullerene organic solar cells. Adv. Mater. Technol. 2019, 4, 1900040.

    Article  CAS  Google Scholar 

  31. Soltman, D.; Subramanian, V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 2008, 24, 2224–2231.

    Article  CAS  PubMed  Google Scholar 

  32. Cherian, D.; Mitra, K. Y.; Hartwig, M.; Malinowski, P. E.; Baumann, R. R. Fabrication of organic photo detectors using inkjet technology and its comparison to conventional deposition processes. IEEE Sens. J. 2018, 18, 94–105.

    Article  CAS  Google Scholar 

  33. Du, Z. H.; Zhou, H.; Yu, X. H.; Han, Y. C. Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing. Colloids Surf., A 2020, 602, 125111.

    Article  CAS  Google Scholar 

  34. Al-Milaji, K. N.; Secondo, R. R.; Ng, T. N.; Kinsey, N.; Zhao, H. Interfacial self-assembly of colloidal nanoparticles in dual-droplet inkjet printing. Adv. Mater. Interfaces 2018, 5, 1701561.

    Article  Google Scholar 

  35. Kuang, M.; Wang, L.; Song, Y. Controllable printing droplets for high-resolution patterns. Adv. Mater. 2014, 26, 6950–6958.

    Article  CAS  PubMed  Google Scholar 

  36. Matavž, A.; Frunză, R.C.; Drnovšek, A.; Bobnar, V.; Malič, B. Inkjet printing of uniform dielectric oxide structures from sol-gel inks by adjusting the solvent composition. J. Mater. Chem. C 2016, 4, 5634–5641.

    Article  Google Scholar 

  37. Jung, S.; Sou, A.; Banger, K.; Ko, D. H.; Chow, P. C. Y.; McNeill, C. R.; Sirringhaus, H. All-inkjet-printed, all-air-processed solar cells. Adv. Energy Mater. 2014, 4, 1400432.

    Article  Google Scholar 

  38. Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 2008, 18, 229–234.

    Article  CAS  Google Scholar 

  39. Teichler, A.; Perelaer, J.; Schubert, U. S. Inkjet printing of organic electronics—comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 2013, 1, 1910–1925.

    Article  CAS  Google Scholar 

  40. Sempels, W.; De Dier, R.; Mizuno, H.; Hofkens, J.; Vermant, J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat. Commun. 2013, 4, 1757.

    Article  PubMed  Google Scholar 

  41. Marin, V.; Holder, E.; Wienk, M. M.; Tekin, E.; Kozodaev, D.; Schubert, U. S. Ink-jet printing of electron donor/acceptor blends: towards bulk heterojunction solar cells. Macromol. Rapid Commun. 2005, 26, 319–324.

    Article  CAS  Google Scholar 

  42. Hoth, C.N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. High photovoltaic performance of inkjet printed polymer:fullerene blends. Adv. Mater. 2007, 19, 3973–3978.

    Article  CAS  Google Scholar 

  43. Eggenhuisen, T. M.; Galagan, Y.; Biezemans, A. F. K. V.; Slaats, T. M. W. L.; Voorthuijzen, W. P.; Kommeren, S.; Shanmugam, S.; Teunissen, J. P.; Hadipour, A.; Verhees, W. J. H.; Veenstra, S. C.; Coenen, M. J. J.; Gilot, J.; Andriessen, R.; Groen, W.A. High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 2015, 3, 7255–7262.

    Article  CAS  Google Scholar 

  44. Corzo, D.; Bihar, E.; Alexandre, E. B.; Rosas-Villalva, D.; Baran, D. Ink engineering of transport layers for 9.5% efficient all-printed semitransparent nonfullerene solar cells. Adv. Funct. Mater. 2020, 31, 2005763.

    Article  Google Scholar 

  45. Jeong, J. A.; Lee, J.; Kim, H.; Kim, H. K.; Na, S. I. Ink-jet printed transparent electrode using nano-size indium tin oxide particles for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 1840–1844.

    Article  CAS  Google Scholar 

  46. Choi, K. H.; Jeong, J. A.; Kim, H. K. Dependence of electrical, optical, and structural properties on the thickness of IZTO thin films grown by linear facing target sputtering for organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1822–1830.

    Article  CAS  Google Scholar 

  47. Chang, Y. M.; Wang, L.; Su, W. F. Polymer solar cells with poly(3,4-ethylenedioxythiophene) as transparent anode. Org. Electron. 2008, 9, 968–973.

    Article  CAS  Google Scholar 

  48. Na, S. I.; Park, D. W.; Kim, S. S.; Yang, S. Y.; Lee, K.; Lee, M. H. ITO-free flexible polymer solar cells with ink-jet-printed Ag grids. Semicond. Sci. Technol. 2012, 27, 125002.

    Article  Google Scholar 

  49. Maisch, P.; Tam, K.C.; Lucera, L.; Egelhaaf, H. J.; Scheiber, H.; Maier, E.; Brabec, C.J. Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells. Org. Electron. 2016, 38, 139–143.

    Article  CAS  Google Scholar 

  50. Kim, J.; Na, S. I.; Kim, H. K. Inkjet printing of transparent InZnSnO conducting electrodes from nano-particle ink for printable organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 98, 424–432.

    Article  CAS  Google Scholar 

  51. Galagan, Y.; Coenen, E. W. C.; Sabik, S.; Gorter, H. H.; Barink, M.; Veenstra, S. C.; Kroon, J. M.; Andriessen, R.; Blom, P. W. M. Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 104, 32–38.

    Article  CAS  Google Scholar 

  52. Lee, I.; Kim, G. W.; Yang, M.; Kim, T. S. Simultaneously enhancing the cohesion and electrical conductivity of PEDOT:PSS conductive polymer films using DMSO additives. ACS Appl. Mater. Interfaces 2016, 8, 302–310.

    Article  PubMed  Google Scholar 

  53. Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311.

    Article  CAS  Google Scholar 

  54. Yamaguchi, H.; Aizawa, K.; Chonan, Y.; Komiyama, T.; Aoyama, T.; Sakai, E.; Qiu, J.; Sato, N. Highly flexible and conductive glycerol-doped PEDOT:PSS films prepared under an electric field. J. Electron. Mater. 2011, 47, 3370–3375.

    Article  Google Scholar 

  55. Khasim, S.; Pasha, A.; Roy, A.S.; Parveen, A.; Badi, N. Effect of secondary doping using sorbitol on structure and transport properties of PEDOT-PSS thin films. J. Electron. Mater. 2017, 46, 4439–4447.

    Article  CAS  Google Scholar 

  56. Kishi, N.; Kondo, Y.; Kunieda, H.; Hibi, S.; Sawada, Y. Enhancement of thermoelectric properties of PEDOT:PSS thin films by addition of anionic surfactants. J. Mater. Sci. Mater. Electron. 2011, 29, 4030–4034.

    Article  Google Scholar 

  57. Yeon, C.; Kim, G.; J; Yun, S. J. Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv. 2017, 7, 5888–5897.

    Article  CAS  Google Scholar 

  58. Lee, J. H.; Jeong, Y. R.; Lee, G.; Jin, S. W.; Lee, Y. H.; Hong, S. Y.; Park, H.; Kim, J. W.; Lee, S. S.; Ha, J. S. Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 2011, 10, 28027–28035.

    Article  Google Scholar 

  59. Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.

    Article  CAS  PubMed  Google Scholar 

  60. Hau, S. K.; Yip, H. L.; Zou, J.; Jen, A. K. Y. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Org. Electron. 2009, 10, 1401–1407.

    Article  CAS  Google Scholar 

  61. Zhou, Y.; Cheun, H.; Choi, S.; Potscavage, W. J.; Fuentes-Hernandez, C.; Kippelen, B. Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl. Phys. Lett. 2010, 97, 153304.

    Article  Google Scholar 

  62. Galagan, Y.; Zimmermann, B.; Coenen, E. W. C.; Jørgensen, M.; Tanenbaum, D. M.; Krebs, F. C.; Gorter, H.; Sabik, S.; Slooff, L. H.; Veenstra, S. C.; Kroon, J. M.; Andriessen, R. Current collecting grids for ITO-free solar cells. Adv. Energy Mater. 2012, 2, 103–110.

    Article  CAS  Google Scholar 

  63. Neophytou, M.; Hermerschmidt, F.; Savva, A.; Georgiou, E.; Choulis, S.A. Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids. Appl. Phys. Lett. 2012, 101, 193302.

    Article  Google Scholar 

  64. Neophytou, M.; Georgiou, E.; Fyrillas, M. M.; Choulis, S. A. Two step sintering process and metal grid design optimization for highly efficient ITO free organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 122, 1–7.

    Article  CAS  Google Scholar 

  65. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081.

    Article  CAS  Google Scholar 

  66. Huang, Y. C.; Hsu, F. H.; Cha, H. C.; Chuang, C. M.; Tsao, C. S.; Chen, C. Y. High-performance ITO-free spray-processed polymer solar cells with incorporating ink-jet printed grid. Org. Electron. 2013, 14, 2809–2817.

    Article  CAS  Google Scholar 

  67. Zhang, Z. L.; Si, T. T.; Liu, J. Controllable assembly of a hierarchical multiscale architecture based on silver nanoparticle grids/nanowires for flexible organic solar cells. Nanotechnology 2018, 29, 11.

    Article  CAS  Google Scholar 

  68. Georgiou, E.; Choulis, S. A.; Hermerschmidt, F.; Pozov, S. M.; Burgues-Ceballos, I.; Christodoulou, C.; Schider, G.; Kreissl, S.; Ward, R.; List-Kratochvil, E. J. W.; Boeffel, C. Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells. Sol. RRL 2018, 2, 1700192.

    Article  Google Scholar 

  69. Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, J.; Luo, Q.; Yang, S.; Ma, C. Q. An efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol-gel ZnO and ZnO nanoparticle bilayer electron transporting layers. J. Mater. Chem. A 2021, 9, 16889–16897.

    Article  CAS  Google Scholar 

  70. Guo, J. B.; Han, Y. F.; Xu, Z. H.; Zha, W. S.; Fang, J.; Luo, Q.; Liu, L. Q.; Ma, C. Q. Monodispersed ZnO nanoink and ultra-smooth large-area ZnO films for high performance and stable organic solar cells. Flex. Print. Electron. 2022, 7, 025013.

    Article  Google Scholar 

  71. Singh, A.; Gupta, S. K.; Garg, A. Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers. Org. Electron. 2016, 35, 118–127.

    Article  CAS  Google Scholar 

  72. Sacramento, A.; Ramirez-Como, M.; Balderrama, V. S.; Garduno, S. I.; Estrada, M.; Marsal, L. F. Inverted polymer solar cells using inkjet printed ZnO as electron transport layer: characterization and degradation study. IEEE J. Electron Devices Soc. 2020, 8, 413–420.

    Article  CAS  Google Scholar 

  73. Kommeren, S.; Coenen, M. J. J.; Eggenhuisen, T. M.; Slaats, T. W. L.; Gorter, H.; Groen, P. Combining solvents and surfactants for inkjet printing PEDOT:PSS on P3HT/PCBM in organic solar cells. Org. Electron. 2018, 61, 282–288.

    Article  CAS  Google Scholar 

  74. Singh, A.; Gupta, S. K.; Garg, A. Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells. Sci. Rep. 2017, 7, 1775.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352–359.

    Article  CAS  Google Scholar 

  76. Lamont, C. A.; Eggenhuisen, T. M.; Coenen, M. J. J.; Slaats, T. W. L.; Andriessen, R.; Groen, P. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org. Electron. 2015, 17, 107–114.

    Article  CAS  Google Scholar 

  77. Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J. Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 2008, 92, 033306.

    Article  Google Scholar 

  78. Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano Lett. 2008, 8, 2806–2813.

    Article  CAS  PubMed  Google Scholar 

  79. Teichler, A.; Eckardt, R.; Hoeppener, S.; Friebe, C.; Perelaer, J.; Senes, A.; Morana, M.; Brabec, C. J.; Schubert, U. S. Combinatorial screening of polymer:fullerene blends for organic solar cells by inkjet printing. Adv. Energy Mater. 2011, 1, 105–114.

    Article  CAS  Google Scholar 

  80. Eom, S. H.; Park, H.; Mujawar, S. H.; Yoon, S. C.; Kim, S. S.; Na, S. I.; Kang, S. J.; Khim, D.; Kim, D. Y.; Lee, S. H. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org. Electron. 2010, 11, 1516–1522.

    Article  CAS  Google Scholar 

  81. Hoth, C. N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells. J. Mater. Chem. 2009, 19, 5398.

    Article  CAS  Google Scholar 

  82. Ganesan, S.; Gollu, S. R.; Alam khan, J.; Kushwaha, A.; Gupta, D. Inkjet printing of zinc oxide and P3HT:ICBA in ambient conditions for inverted bulk heterojunction solar cells. Opt. Mater. 2019, 94, 430–435.

    Article  CAS  Google Scholar 

  83. Eggenhuisen, T. M.; Galagan, Y.; Coenen, E. W. C.; Voorthuijzen, W. P.; Slaats, M. W. L.; Kommeren, S. A.; Shanmuganam, S.; Coenen, M. J. J.; Andriessen, R.; Groen, W. A. Digital fabrication of organic solar cells by inkjet printing using non-halogenated solvents. Sol. Energy Mater. Sol. Cells 2015, 134, 364–372.

    Article  CAS  Google Scholar 

  84. Perkhun, P.; Köntges, W.; Pourcin, F.; Esteoulle, D.; Barulina, E.; Yoshimoto, N.; Pierron, P.; Margeat, O.; Videlot-Ackermann, C.; Bharwal, A. K.; Duché, D.; Herrero, C. R.; Gonzales, C.; Guerrero, A.; Bisquert, J.; Schröder, R. R.; Pfannmöller, M.; Ben Dkhil, S.; Simon, J. J.; Ackermann, J. High-efficiency digital inkjet-printed non-fullerene polymer blends using non-halogenated solvents. Adv. Energy Sustain. Res. 2021, 2, 2000086.

    Article  CAS  Google Scholar 

  85. Lan, S.; Zhong, J.; Wang, X. Impact of inkjet printing parameters on the morphology and device performance of organic photovoltaics. J. Phys. D: Appl. Phys. 2021, 54, 465105.

    Article  CAS  Google Scholar 

  86. Wang, Y.; Luo, Q.; Wu, N.; Wang, Q.; Zhu, H.; Chen, L.; Li, Y.Q.; Luo, L.; Ma, C. Q. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells. ACS Appl. Mater. Interfaces 2015, 7, 7170–7179.

    Article  CAS  PubMed  Google Scholar 

  87. Ji, G.; Wang, Y.; Luo, Q.; Han, K.; Xie, M.; Zhang, L.; Wu, N.; Lin, J.; Xiao, S.; Li, Y.Q.; Luo, L.Q.; Ma, C.Q. Fully coated semitransparent organic solar cells with a doctor-blade-coated composite anode buffer layer of phosphomolybdic acid and PEDOT:PSS and a spray-coated silver nanowire top electrode. ACS Appl. Mater. Interfaces 2018, 10, 943–954.

    Article  CAS  PubMed  Google Scholar 

  88. Li, D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

    Article  Google Scholar 

  89. Hermerschmidt, F.; Choulis, S. A.; List-Kratochvil, E. J. W. Implementing inkjet-printed transparent conductive electrodes in solution-processed organic electronics. Adv. Mater. Technol. 2019, 4, 1800474.

    Article  Google Scholar 

  90. Galagan, Y.; Shanmugam, S.; Teunissen, J. P.; Eggenhuisen, T. M.; Biezemans, A. F. K. V.; Van Gijseghem, T.; Groen, W. A.; Andriessen, R. Solution processing of back electrodes for organic solar cells with inverted architecture. Sol. Energy Mater. Sol. Cells 2014, 130, 163–169.

    Article  CAS  Google Scholar 

  91. Georgiou, E.; Savva, A.; Neophytou, M.; Hermerschmidt, F.; Demosthenous, T.; Choulis, S. A. Evaporation-free inverted organic photovoltaics using a mixture of silver nanoparticle ink formulations for solution-processed top electrodes. Appl. Phys. Lett. 2014, 105, 233901.

    Article  Google Scholar 

  92. Lu, H.; Lin, J.; Wu, N.; Nie, S.; Luo, Q.; Ma, C. Q.; Cui, Z. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 2015, 106, 093302.

    Article  Google Scholar 

  93. Finn, D. J.; Lotya, M.; Coleman, J. N. Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261.

    Article  CAS  PubMed  Google Scholar 

  94. Park, E. K.; Kim, J. H.; Lee, D. H.; Kim, K. S.; Kal, J. H.; Hahn, J. S.; Kim, Y. S. All ink-jet printed P3HT:PCBM organic solar cells on ITO-coated glass substrate. J. Nanosci. Nanotechnol. 2015, 15, 8790–8796.

    Article  CAS  PubMed  Google Scholar 

  95. Maisch, P.; Tam, K. C.; Schilinsky, P.; Egelhaaf, H. J.; Brabec, C. J. Shy organic photovoltaics: digitally printed organic solar modules with hidden interconnects. Sol. RRL 2018, 2, 1800005.

    Article  Google Scholar 

  96. Mitra, K. Y.; Alalawe, A.; Voigt, S.; Boeffel, C.; Baumann, R. R. Manufacturing of all inkjet-printed organic photovoltaic cell arrays and evaluating their suitability for flexible electronics. Micromachines 2018, 9, 642.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bihar, E.; Corzo, D.; Hidalgo, T. C.; Rosas-Villalva, D.; Salama, K. N.; Inal, S.; Baran, D. Fully inkjet-printed, ultrathin and conformable organic photovoltaics as power source based on cross-linked PEDOT:PSS electrodes. Adv. Mater. Technol. 2020, 5, 2000226.

    Article  CAS  Google Scholar 

  98. Patil, B. R.; Shanmugam, S.; Teunissen, J. P.; Galagan, Y. All-solution processed organic solar cells with top illumination. Org. Electron. 2015, 21, 40–46.

    Article  CAS  Google Scholar 

  99. Wei, Z.; Chen, H.; Yan, K.; Yang, S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 2014, 53, 13239–13243.

    Article  CAS  Google Scholar 

  100. Li, S. G.; Jiang, K. J.; Su, M. J.; Cui, X. P.; Huang, J. H.; Zhang, Q. Q.; Zhou, X. Q.; Yang, L. M.; Song, Y. L. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 2015, 3, 9092–9097.

    Article  CAS  Google Scholar 

  101. Chalkias, D. A.; Mourtzikou, A.; Katsagounos, G.; Karavioti, A.; Kalarakis, A. N.; Stathatos, E. Suppression of coffee-ring effect in air-processed inkjet-printed perovskite layer toward the fabrication of efficient large-sized all-printed photovoltaics: a perovskite precursor ink concentration regulation strategy. Sol. RRL 2022, 6, 2200196.

    Article  CAS  Google Scholar 

  102. Gheno, A.; Huang, Y.; Bouclé, J.; Ratier, B.; Rolland, A.; Even, J.; Vedraine, S. Toward highly efficient inkjet-printed perovskite solar cells fully processed under ambient conditions and at low temperature. Sol. RRL 2018, 2, 1800191.

    Article  Google Scholar 

  103. Zhang, L. H.; Chen, S.; Wang, X. Z.; Wang, D.; Li, Y.; Ai, Q.; Sun, X. Y.; Chen, J. B.; Li, Y.; Jiang, X. Z.; Yang, S. H.; Xu, B. M. Ambient inkjet-printed high-efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. Sol. RRL 2021, 5, 2100106.

    Article  CAS  Google Scholar 

  104. Hashmi, S. G.; Martineau, D.; Li, X.; Ozkan, M.; Tiihonen, A.; Dar, M. I.; Sarikka, T.; Zakeeruddin, S. M.; Paltakari, J.; Lund, P. D.; Grätzel, M. Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility. Adv. Mater. Technol. 2017, 2, 1600183.

    Article  Google Scholar 

  105. Pathak, C. S.; Paramasivam, G.; Mathies, F.; Hirselandt, K.; Schroder, V.; Maus, O.; Dagar, J.; Klimm, C.; Unger, E.; Visoly-Fisher, I. PTB7 as an ink-additive for spin-coated versus inkjet-printed perovskite solar cells. ACS Appl. Energy Mater. 2022, 5, 4085–4095.

    Article  CAS  Google Scholar 

  106. Li, Z.; Li, P.; Chen, G.; Cheng, Y.; Pi, X.; Yu, X.; Yang, D.; Han, L.; Zhang, Y.; Song, Y. Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces 2020, 12, 39082–39091.

    Article  CAS  PubMed  Google Scholar 

  107. Wilk, B.; Öz, S.; Radicchi, E.; Ünlü, F.; Ahmad, T.; Herman, A. P.; Nunzi, F.; Mathur, S.; Kudrawiec, R.; Wojciechowski, K. Green solvent-based perovskite precursor development for ink-jet printed flexible solar cells. ACS Sustain. Chem. Eng 2021, 9, 3920–3930.

    Article  CAS  Google Scholar 

  108. Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G. One-step inkjet printed perovskite in air for efficient light harvesting. Sol. RRL 2018, 2, 1700217.

    Article  Google Scholar 

  109. Mathies, F.; Abzieher, T.; Hochstuhl, A.; Glaser, K.; Colsmann, A.; Paetzold, U.W.; Hernandez-Sosa, G.; Lemmer, U.; Quintillaa, A. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J. Mater. Chem. A 2016, 4, 19207–19213.

    Article  CAS  Google Scholar 

  110. Huckaba, A. J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V. C.; Oveisi, E.; Lesch, A.; Kinge, S.; Dyson, P. J.; Girault, H.; Nazeeruddin, M. K. Inkjet-printed mesoporous TiO2 and perovskite layers for high efficiency perovskite solar cells. Energy Technol. 2019, 7, 317–324.

    Article  CAS  Google Scholar 

  111. Schackmar, F.; Eggers, H.; Frericks, M.; Richards, B. S.; Lemmer, U.; Hernandez-Sosa, G.; Paetzold, U. W. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers. Adv. Mater. Technol. 2021, 6, 2000271.

    Article  CAS  Google Scholar 

  112. Schlisske, S.; Mathies, F.; Busko, D.; Strobel, N.; Rodlmeier, T.; Richards, B. S.; Lemmer, U.; Paetzold, U. W.; Hernandez-Sosa, G.; Klampaftis, E. Design and color flexibility for inkjet-printed perovskite photovoltaics. ACS Appl. Energy Mater. 2019, 2, 764–769.

    Article  CAS  Google Scholar 

  113. Hou, Y.; Xie, C.; Radmilovic, V. V.; Puscher, B.; Wu, M.; Heumuller, T.; Karl, A.; Li, N.; Tang, X.; Meng, W.; Chen, S.; Osvet, A.; Guldi, D.; Spiecker, E.; Radmilovic, V. R.; Brabec, C. J. Assembling mesoscale-structured organic interfaces in perovskite photovoltaics. Adv. Mater. 2019, 31, 1806516.

    Article  Google Scholar 

  114. Xie, C.; Heumuller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Spath, A.; Fink, R. H.; Unruh, T.; McCulloch, I.; Li, N.; Brabec, C. J. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Manger, F.; Marlow, P.; Fischer, K.; Nöller, M.; Sprau, C.; Colsmann, A. Organic solar cells: electrostatic stabilization of organic semiconductor nanoparticle dispersions by electrical doping. Adv. Funct. Mater. 2022, 32, 2202566.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Youth Innovation Promotion Association, CAS (No. 2019317), CAS-CSIRO joint project (No. 121E32KYSB20190021) of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Luo or Chang-Qi Ma.

Additional information

Biographies

Qun Luo received her Ph.D. form Zhejiang University in 2011. Then she worked as a postdoc at Suzhou Institute of Nano-Tech and Nano-Bionics, CAS. Currently she is a professor at Suzhou Institute of Nano-Tech and Nano-Bionics. Her research interests include printable materials and interface engineering in flexible and large-area printed solar cells.

Chang-Qi Ma received his Ph.D. at the Technical Institute of Physics and Chemistry, CAS. After that, he worked as a postdoc at Heriot-Watt University (UK), and then he joined University of Ulm in 2004 as a Humboldt fellow. From January 2007 to May 2011, he did his Habilitation at Institute of Organic Chemistry II and Advanced Materials, Ulm University. In June 2011, he joined Suzhou Institute of Nano-Tech and Nano-Bionics, CAS as a professor. His research focuses on printing processing and stability of organic solar cells.

Conflict of Interests

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XZ., Luo, Q. & Ma, CQ. Inkjet-Printed Organic Solar Cells and Perovskite Solar Cells: Progress, Challenges, and Prospect. Chin J Polym Sci 41, 1169–1197 (2023). https://doi.org/10.1007/s10118-023-2961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2961-z

Keywords

Navigation