Skip to main content
Log in

A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The development of donor-acceptor (D-A) type conjugated polymers depends largely on the design of novel A building blocks. Herein, we report a novel A building block based on the cyano-substituted organoboron unit (SBN-3). Compared with the most common fluorine-substituted B←N unit, SBN-3 displays a significantly downshifted LUMO energy level because of the strong electron-withdrawing ability of cyano groups. In addition, due to the greater impact of cyano substitution on LUMO than on HOMO, SBN-3 exhibits a reduced band gap, near-infrared absorption and fluorescence properties. The D-A type conjugated polymers based on the cyano-substituted B←N unit with thiophene-based units show narrow optical band gaps of ca. 1.3 eV as well as distinctive electronic structures, i.e., delocalized LUMOs and localized HOMOs. This work thus provides not only an effective approach to design strong A units but also a new electron-deficient building block for D-A type conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897–1091.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Z. L.; Shi, Y. B.; Deng, Y. F.; Han, Y.; Geng, Y. H. Toward high mobility green solvent-processable conjugated polymers: a systematic study on chalcogen effect in poly(diketopyrrolopyrrole-alt-terchalcogenophene)s. Adv. Funct. Mater. 2021, 31, 2104881.

    Article  CAS  Google Scholar 

  3. Genene, Z.; Mammo, W.; Wang, E. G.; Andersson, M. R. Recent advances in n-type polymers for all-polymer solar cells. Adv. Mater. 2019, 31, 180727.

    Article  Google Scholar 

  4. Shi, K.; Zhang, F. J.; Di, C. A.; Yan, T. W.; Zou, Y.; Zhou, X.; Zhu, D. B.; Wang, J. Y.; Pei, J. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 2015, 137, 6979–6982.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater. 2020, 30, 190454.

    Google Scholar 

  6. Cao, X.; Min, Y.; Tian, H. K.; Liu, J. Incorporating cyano groups to a conjugated polymer based on double B←N-bridged bipyridine units for unipolar n-type organic field-effect transistors. Org. Mater. 2021, 3, 469–476.

    Article  CAS  Google Scholar 

  7. Wang, M.; Hu, X. W.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 2011, 133, 9638–9641.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, P.; Yang, Y. Narrowing the band gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228.

    Article  CAS  PubMed  Google Scholar 

  9. Vella, J. H.; Huang, L. F.; Eedugurala, N.; Mayer, K. S.; Ng, T. N.; Azoulay, J. D. Broadband infrared photodetection using a narrow bandgap conjugated polymer. Sci. Adv. 2021, 7, eabg2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dou, L. T.; Liu, Y. S.; Hong, Z. R.; Li, G.; Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 2015, 115, 12633–12665.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl. Phys. Lett. 2004, 85, 5081–5083.

    Article  CAS  Google Scholar 

  12. Blouin, N.; Michaud, A.; Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 2007, 19, 2295–2300.

    Article  CAS  Google Scholar 

  13. Hu, X. M.; Zhong, C. X.; Li, X. Y.; Jia, X.; Wei, Y.; Xie, L. H. Synthesis and application of cyclopentadithiophene derivatives. Acta Chim. Sinica 2021, 79, 953–966.

    Article  CAS  Google Scholar 

  14. Yao, H. F.; Ye, L.; Zhang, H.; Li, S. S.; Zhang, S. Q.; Hou, J. H. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 2016, 116, 7397–7457.

    Article  CAS  PubMed  Google Scholar 

  15. Bin, H. J.; Zhong, L.; Zhang, Z. G.; Gao, L.; Yang, Y. K.; Xue, L. W.; Zhang, J.; Zhang, Z. J.; Li, Y. F. Alkoxy substituted benzodithiophene-alt-fluorobenzotriazole copolymer as donor in non-fullerene polymer solar cells. Sci. China Chem. 2016, 59, 1317–1322.

    Article  CAS  Google Scholar 

  16. Li, Y. X.; Gu, M. C.; Pan, Z.; Zhang, B.; Yang, X. T.; Gu, J. W.; Chen, Y. Indacenodithiophene: a promising building block for high performance polymer solar cells. J. Mater. Chem. A 2017, 5, 10798–10814.

    Article  CAS  Google Scholar 

  17. Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; McCulloch, I. Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors. J. Am. Chem. Soc. 2020, 142, 652–664.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, H. L.; Wang, L.; Wang, Y. F.; Guo, X. G. Imide-functionalized polymer semiconductors. Chem. Eur. J. 2019, 25, 87–105.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Z. C.; Zhang, Y.; Wang, P.; Yang, J. X.; Yang, K.; Li, J. F.; Yang, J.; Li, Y. C.; Dong, H. L.; Guo, X. G. A class of electron-deficient units: fluorenone imide and its electron-withdrawing group-functionalized derivatives. Chem. Commun. 2022, 58, 12467–12470.

    Article  CAS  Google Scholar 

  20. Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V−1 s−1 under ambient conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. Z.; Yu, Y. P.; Liao, H. L.; Zhou, Y. C.; McCulloch, I.; Yue, W. The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials. Acc. Chem. Res. 2020, 53, 2855–2868.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, C.; Liu, F.; Chen, Q. M.; Xiao, C. Y.; Wu, Y. G.; Li, W. W. Benzothiadiazole-based conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2021, 39, 525–536.

    Article  Google Scholar 

  23. Wang, Y.; Michinobu, T. Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor-acceptor polymers in organic electronics. J. Mater. Chem. C 2016, 4, 6200–6214.

    Article  CAS  Google Scholar 

  24. Feng, K.; Guo, H.; Wang, J. W.; Shi, Y. Q.; Wu, Z.; Su, M. Y.; Zhang, X. H.; Son, J. H.; Woo, H. Y.; Guo, X. G. Canno-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structure-property correlations, and thermoelectric performance. J. Am. Chem. Soc. 2021, 143, 1539–1552.

    Article  CAS  PubMed  Google Scholar 

  25. Wakamiya, A.; Taniguchi, T.; Yamaguchi, S. Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles. Angew. Chem. Int. Ed. 2006, 45, 3170–3173.

    Article  CAS  Google Scholar 

  26. Dou, C. D.; Long, X. J.; Ding, Z. C.; Xie, Z. Y.; Liu, J.; Wang, L. X. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436–1440.

    Article  CAS  Google Scholar 

  27. Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci. 2017, 35, 198–206.

    Article  CAS  Google Scholar 

  28. Dou, C. D.; Ding, Z. C.; Zhang, Z. J.; Xie, Z. Y.; Liu, J.; Wang, L. X. Developing conjugated polymers with high electron affinity by replacing a C-C Unit with a B←N unit. Angew. Chem. Int. Ed. 2015, 54, 3648–3652.

    Article  CAS  Google Scholar 

  29. Miao, J. H.; Wang, Y. H.; Liu, J.; Wang, L. X. Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev. 2022, 51, 153–187.

    Article  PubMed  Google Scholar 

  30. Dong, C. S.; Deng, S. H.; Meng, B.; Liu, J.; Wang, L. X. A distannylated monomer of a strong electron-accepting organoboron building block: enabling acceptor-acceptor-type conjugated polymers for n-type thermoelectric applications. Angew. Chem. Int. Ed. 2021, 60, 16184–16190.

    Article  CAS  Google Scholar 

  31. Li, Y. C.; Meng, H. F.; Liu, T.; Xiao, Y. Q.; Tang, Z. H.; Pang, B.; Li, Y. Q.; Xiang, Y.; Zhang, G. Y.; Lu, X. H.; Yu, G.; Yan, H.; Zhan, C. L.; Huang, J. H.; Yao, J. N. 8.78% Efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit. Adv. Mater. 2019, 31, 1904585.

    Article  CAS  Google Scholar 

  32. Xiang, Y.; Meng, H. F.; Yao, Q.; Chang, Y.; Yu, H.; Guo, L.; Xue, Q. F.; Zhan, C. L.; Huang, J. H.; Chen, G. H. B←N bridged polymer acceptors with 900 nm absorption edges enabling high-performance all-polymer solar cells. Macromolecules 2020, 53, 9529–9538.

    Article  CAS  Google Scholar 

  33. Huang, J. H.; Wang, X. L.; Xiang, Y.; Guo, L.; Chen, G. H. B←N coordination: from chemistry to organic photovoltaic materials. Adv. Energy Sustain. Res. 2021, 2, 2100016.

    Article  CAS  Google Scholar 

  34. Cao, Y. R.; Zhu, C. Z.; Barlog, M.; Barker, K. P.; Ji, X. Z.; Kalin, A. J.; Al-Hashimi, M.; Fang, L. Electron-deficient polycyclic π-system fused with multiple B←N coordinate bonds. J. Org. Chem. 2021, 86, 2100–2106.

    Article  CAS  PubMed  Google Scholar 

  35. Shao, X. X.; Wang, J. H.; Marder, T. B.; Xie, Z. Y.; Liu, J.; Wang, L. X. N—B←N bridged bithiophene: a building block with reduced band gap to design n-type conjugated polymers. Macromolecules 2021, 54, 6718–6725.

    Article  CAS  Google Scholar 

  36. Gapare, R. L.; Thompson, A. Substitution at boron in BODIPYs. Chem. Commun. 2022, 58, 7351–7359.

    Article  CAS  Google Scholar 

  37. Yoshii, R.; Yamane, H.; Tanaka, K.; Chujo, Y. Synthetic strategy for low-band gap oligomers and homopolymers using characteristics of thiophene-fused boron dipyrromethene. Macromolecules 2014, 47, 3755–3760.

    Article  CAS  Google Scholar 

  38. Zhang, Z.; Yuan, D. F.; Liu, X. S.; Kim, M. J.; Nashchadin, A.; Sharapov, V.; Yu, L. P. BODIPY-containing polymers with ultralow band gaps and ambipolar charge mobilities. Macromolecules 2020, 53, 2014–2020.

    Article  CAS  Google Scholar 

  39. Kim, H. S.; Huseynova, G.; Noh, Y. Y.; Hwang, D. H. Modulation of majority charge carrier from hole to electron by incorporation of cyano groups in diketopyrrolopyrrole-based polymers. Macromolecules 2017, 50, 7550–7558.

    Article  CAS  Google Scholar 

  40. Shao, X. X.; Liu, M. Y.; Liu, J.; Wang, L. X. A resonating B, N covalent bond and coordination bond in aromatic compounds and conjugated polymers. Angew. Chem. Int. Ed. 2022, 61, e202205893.

    Article  CAS  Google Scholar 

  41. Nguyen, A. L.; Wang, M. D.; Bobadova-Parvanova, P.; Do, Q.; Zhou, Z. H.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. H. Synthesis and properties of B-cyano-BODIPYs. J. Porphyrins Phthalocyanines 2016, 20, 1409–1419.

    Article  CAS  Google Scholar 

  42. Li, L. L.; Nguyen, B.; Burgess, K. Functionalization of the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core. Bioorg. Med. Chem. Lett. 2008, 18, 3112–3116.

    Article  CAS  PubMed  Google Scholar 

  43. Ma, S. S.; Song, Y.; Wang, Z. F.; He, B. T.; Yang, X. Y.; Li, L.; Xu, B. M.; Zhang, J.; Huang, F.; Cao, Y. Synthesis of medium bandgap copolymers based on benzotriazole for non-fullerene organic solar cells. Polymer 2019, 179, 121580.

    Article  CAS  Google Scholar 

  44. Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686.

    Article  CAS  PubMed  Google Scholar 

  45. Shao, X. X.; Dou, C. D.; Liu, J.; Wang, L. X. A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on B←N unit. Sci. China Chem. 2019, 62, 1387–1392.

    Article  CAS  Google Scholar 

  46. Wang, Y. H.; Wang, N.; Yang, Q. Q.; Zhang, J. D.; Liu, J.; Wang, L. X. A polymer acceptor containing the B←N unit for all-polymer solar cells with 14% efficiency. J. Mater. Chem. A 2021, 9, 21071–21077.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22135007, 21875244 and 52073281) and Jilin Scientific and Technological Development Program (No. YDZJ202101ZYTS138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MY., Shao, XX., Liu, J. et al. A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. Chin J Polym Sci 41, 832–838 (2023). https://doi.org/10.1007/s10118-023-2940-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2940-4

Keywords

Navigation