Skip to main content

Advertisement

Log in

Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Coordination-insertion ring-opening polymerization (ROP) of cyclic esters is an industrial way to synthesize polyesters, which are widely applied in biomedical and environment-benign fields. However, the rate-determining transition state (TS) identified by the conventional reaction pathways (pathway A and pathway B) presented in the literature did not well describe the structure-reactivity relationship. The misidentification of the rate-determining TS might arise from the less ergodicity in the search of reaction pathways. Herein, we suggested a stride strategy based on the insight that even a partial double bond is rotatable at the catalysis temperature. As a result, we revealed a new reaction pathway, pathway C with a torsion transition state TSC2, by density functional theory (DFT). We also carried out kinetic experiments of ROP of D-lactide (D-LA), L-lactide (L-LA), ε-caprolactone (CL), and δ-valerolactone (VL), using poly(ethylene glycol) as the initiator and stannous octoate as the catalyst. The excellent linearity between the calculated free energy barriers and logarithms of the experimental kinetic constants of the two kinds of lactide and lactone monomers, was established, validating the quasi-ergodic search of reaction pathways and the scaling predicted by transition state theory. The linearity was highly predictive for the other lactide and lactone monomers, demonstrated by glycolide (GA) and trimethylene urethane (TU).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392.

    Article  CAS  PubMed  Google Scholar 

  2. Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014, 47, 2390–2396.

    Article  CAS  PubMed  Google Scholar 

  3. Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162.

    Article  CAS  PubMed  Google Scholar 

  4. Yuan, Yin.; Shi, X. D.; Gan, Z. H. Wang, F. S. Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds. Colloid. Surface B 2018, 161, 162–168.

    Article  CAS  Google Scholar 

  5. Cui, S. Q.; Yu, L.; Ding, J. D. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (in Chinese) 2018, 997–1015.

  6. Tang, X.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284–312.

    Article  CAS  Google Scholar 

  7. Zhang, H. J.; Zhang, W. Q.; Qiu, H.; Zhang, G.; Li, X.; Qi, H. P.; Guo, J. Z.; Qian, J.; Shi, X. L.; Gao, X.; Shi, D. K.; Zhang, D. Y.; Gao, R. L.; Ding, J. D. A biodegradable metal-polymer composite stent safe and effective on physiological and serum-containing biomimetic conditions. Adv. Healthc. Mater. 2022, 11, 2201740.

    Article  CAS  Google Scholar 

  8. Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Synthesis of poly (lactic acid): a review. J. Macromol. Sci., Polym. Rev. 2005, 45, 325–349.

    Article  Google Scholar 

  9. Cui, S. Q.; Yu, L.; Ding, J. D. Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type. Macromolecules 2019, 52, 3697–3715.

    Article  CAS  Google Scholar 

  10. Albertsson, A. C.; Varma, I. K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4, 1466–1486.

    Article  CAS  PubMed  Google Scholar 

  11. Dijkstra, P. J.; Du, H.; Feijen, J. Single site catalysts for stereoselective ring-opening polymerization of lactides. Polym. Chem. 2011, 2, 520–527.

    Article  CAS  Google Scholar 

  12. Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839–885.

    Article  CAS  PubMed  Google Scholar 

  13. Bartnikowski, M.; Dargaville, T. R.; Ivanovski, S.; Hutmacher, D. W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20.

    Article  CAS  Google Scholar 

  14. Chen, W. H.; Chen, Q. W.; Chen, Q.; Cui, C. Y; Duan, S.; Kang, Y. Y.; Liu, Y.; Muhammad, W.; Shao, S. Q.; Tang, C. Q.; Wang, J. Q.; Wang, L.; Xiong, M. H.; Yin, L. C.; Zhang, K.; Zhang, Z. Z.; Zhen, X.; Feng, J.; Gao, C. Y.; Gu, Z.; He, C. L.; Ji, J.; Jiang, X. Q.; Liu, W. G.; Liu, Z.; Peng, H. S.; Shen, Y. Q.; Shi, L. Q.; Sun, X. M.; Wang, H.; Wang, J.; Xiao, H. H.; Xu, F. J.; Zhong, Z. Y.; Zhang, X. Z.; Chen, X. S. Biomedical polymers: synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, J. C.; Yu, T. L.; Chen, C. T.; Lin, C. C. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev. 2006, 250, 602–626.

    Article  CAS  Google Scholar 

  16. Platel, R. H.; Hodgson, L. M.; Williams, C. K. Biocompatible initiators for lactide polymerization. Polym. Rev. 2008, 48, 11–63.

    Article  CAS  Google Scholar 

  17. Dutta, S.; Hung, W. C.; Huang, B. H.; Lin, C. C. Recent developments in metal-catalyzed ring-opening polymerization of lactides and glycolides: preparation of polylactides, polyglycolide, and poly(lactide-co-glycolide). Adv. Polym. Sci. 2012, 245, 219–283.

    Article  CAS  Google Scholar 

  18. Kowalski, A.; Libiszowski, J.; Biela, T.; Cypryk, M.; Duda, A.; Penczek, S.. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. Polymerization of ε-caprolactone and L,L-lactide co-initiated with primary amines. Macromolecules 2005, 38, 8170–8176.

    Article  CAS  Google Scholar 

  19. Bednarek, M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci. 2016, 58, 27–58.

    Article  CAS  Google Scholar 

  20. Fuoco, T.; Pappalardo, D. Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters. Catalysts 2017, 7, 64.

    Article  Google Scholar 

  21. Jiang, H. J.; He, J. P.; Liu, J. P.; Yang, Y. L. Synthesis and characterization of poly(ethylene-co-vinyl alcohol)-graft-poly(ε-caprolactone). Polym. J. 2002, 34, 682–686.

    Article  CAS  Google Scholar 

  22. Xiang, S.; Zhou, D. D.; Feng, L. D.; Bian, X. C.; Li, G.; Chen, X. S.; Wang, T. C. Influence of chain architectures on crystallization behaviors of PLLA block in PEG/PLLA block copolymers. Chinese J. Polym. Sci. 2019, 37, 258–267.

    Article  CAS  Google Scholar 

  23. Cui, S. Q.; Chen, L.; Yu, L.; Ding, J. D. Synergism among polydispersed amphiphilic block copolymers leading to spontaneous physical hydrogelation upon heating. Macromolecules 2020, 53, 7726–7739.

    Article  CAS  Google Scholar 

  24. Cai, C. Y.; Tang, J. Y. Zhang, Y.; Rao, W. H.; Cao, D. L. G.; Guo, W.; Yu, L.; Ding, J. D. Intelligent paper-free sprayable skin mask based on an in situ formed Janus hydrogel of an environment-friendly polymer. Adv. Healthc. Mater. 2022, 11, 2102654.

    Article  CAS  Google Scholar 

  25. Peng, Y. M.; Liu, Q. J.; He, T. L.; Ye, K.; Yao, X.; Ding, J. D. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials 2018, 178, 467–480.

    Article  CAS  PubMed  Google Scholar 

  26. Lecomte, P.; Riva, R.; Jérôme, C.; Jérôme, R. Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and ‘click’ chemistry. Macromol. Rapid Commun. 2008, 29, 982–997.

    Article  CAS  Google Scholar 

  27. Chen, T. T.; Cai, T. J.; Jin, Q.; Ji, J. Design and fabrication of functional polycaprolactone. e-Polymers 2015, 15, 3–13.

    Article  CAS  Google Scholar 

  28. d’Arcy, R.; Burke, J.; Tirelli, N. Branched polyesters: preparative strategies and applications. Adv. Drug Deliv. Rev. 2016, 107, 60–81.

    Article  PubMed  Google Scholar 

  29. Xu, Y. C.; Ren, W. M.; Zhou, H.; Gu, G. G.; Lu, X. B. Functionalized polyesters with tunable degradability prepared by controlled ring-opening (co)polymerization of lactones. Macromolecules 2017, 50, 3131–3142.

    Article  CAS  Google Scholar 

  30. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107–115.

    Article  CAS  Google Scholar 

  31. Evans, M. G.; Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935, 31, 875–894.

    Article  CAS  Google Scholar 

  32. Laidler, K. J.; King, M. C. The development of transition-state theory. J. Phys. Chem. 1983, 87, 2657–2664.

    Article  CAS  Google Scholar 

  33. Polanyi, J. C. Some concepts in reaction dynamics. Science 1987, 236, 680–690.

    Article  CAS  PubMed  Google Scholar 

  34. Orio M.; Pantazis, D. A. Neese, F. Density functional theory. Photosynth. Res. 2009, 102, 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shang, C.; Liu, Z. P. Constrained broyden dimer method with bias potential for exploring potential energy surface of multistep reaction process. J. Chem. Theory Comput. 2012, 8, 2215–2222.

    Article  CAS  PubMed  Google Scholar 

  36. Bo, X. X.; Zheng, H. F.; Xin, J. F.; Ding, Y. H. A kinetically persistent isomer found for pentazole: a global potential energy surface survey. Chem. Commun. 2019, 55, 2597–2600.

    Article  CAS  Google Scholar 

  37. Wu, F. L; Huang, Y. D.; Yu, F. Z.; Li, Z. H.; Ding, C. F. Effect of transition-metal Ions on the conformation of encephalin investigated by hydrogen/deuterium exchange and theoretical calculations. J. Phys. Chem. B 2020, 124, 101–109.

    Article  CAS  PubMed  Google Scholar 

  38. Han, J. R.; Wu, F. L.; Yang, S. T.; Wu, X. N.; Tang, K. Q.; Li, Z. H.; Ding, C. F. Conformation changes of enkephalin in coordination with Pb2+ Investigated by gas phase hydrogen/deuterium exchange mass spectrometry combined with theoretical calculations. Chem. Res. in Chin. Univ. 2022, 38, 572–578.

    Article  CAS  Google Scholar 

  39. Zhao, Y.; Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167.

    Article  CAS  PubMed  Google Scholar 

  40. Marlier, E. E.; Macaranas, J. A.; Marell, D. J.; Dunbar, C. R.; Johnson, M. A.; DePorre, Y.; Miranda, M. O.; Neisen, B. D.; Cramer, C. J.; Hillmyer, M. A.; Tolman, W. B. Mechanistic studies of ε-caprolactone polymerization by (salen) alor complexes and a predictive model for cyclic ester polymerizations. ACS Catal. 2016, 6, 1215–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nifant’ev, I. E.; Ivchenko, P. Coordination ring-opening polymerization of cyclic esters: A critical overview of DFT modeling and visualization of the reaction mechanisms. Molecules 2019, 24, 4117.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford University Press, 2017.

  43. Binder, K.; Heermann, D. W. Monte Carlo simulation in statistical physics. Springer-Verlag Berlin, 2010.

  44. Xu, G. Q.; Ding, J. D.; Yang, Y. L. Monte Carlo simulation of self-avoiding lattice chains subject to simple shear flow. I. Model and simulation algorithm. J. Chem. Phys. 1997, 107, 4070.

    Article  CAS  Google Scholar 

  45. Luo, Z. L.; Ding, J. D.; Zhou, Y. Q. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model. Biophys. J. 2007, 93, 2152–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui, S.; Yu, Q. L.; Ding, J. D. Semi-bald micelles and corresponding percolated micelle networks of thermogels. Macromolecules 2018, 51, 6405–6420.

    Article  CAS  Google Scholar 

  47. Cui, S. Q.; Yu, L.; Ding, J. D. Strategy of “block blends” to generate polymeric thermogels versus that of one-component block copolymer. Macromolecules 2020, 53, 11051–11064.

    Article  CAS  Google Scholar 

  48. Gao, H. B.; Li, H.; Zhang, X. Q.; Wang, X. H.; Li, C. Y.; Luo, M. B. Computer simulation study on adsorption and conformation of polymer chains driven by external force. Chinese J. Polym. Sci. 2021, 39, 258–266.

    Article  CAS  Google Scholar 

  49. Ma, R.; Xu, D.; Luo, C. F. Effect of crystallization and entropy contribution upon the mechanical response of polymer nano-fibers: a steered molecular dynamics study. Chinese J. Polym. Sci. 2023, 41, 465–474.

    Article  CAS  Google Scholar 

  50. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860–862.

    Article  CAS  PubMed  Google Scholar 

  51. Yu, L.; Ding, J. D. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37, 1473–1481.

    Article  CAS  PubMed  Google Scholar 

  52. Tabthong, S.; Nanok, T.; Sumrit, P.; Kongsaeree, P.; Prabpai, S.; Chuawong, P.; Hormnirun, P. Bis(pyrrolidene) schiff base aluminum complexes as isoselective-biased initiators for the controlled ring-opening polymerization of rac-lactide: experimental and theoretical studies. Macromolecules 2015, 48, 6846–6861.

    Article  CAS  Google Scholar 

  53. Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  54. Gesslbauer, S.; Savela, R.; Chen, Y.; White, A. J. P.; Romain, C. Exploiting noncovalent interactions for room-temperature heteroselective rac-lactide polymerization using aluminum catalysts. ACS Catal. 2019, 9, 7912–7920.

    Article  CAS  Google Scholar 

  55. Rao, W. H.; Cai, C. Y.; Tang, J. Y.; Wei, Y. M.; Gao, C. Y.; Yu, L.; Ding, J. D. Coordination insertion mechanism of ring-opening polymerization of lactide catalyzed by stannous octoate. Chin. J. Chem. 2021, 39, 1965–1974.

    Article  CAS  Google Scholar 

  56. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

    Article  CAS  Google Scholar 

  57. Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688.

    Article  CAS  PubMed  Google Scholar 

  58. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  Google Scholar 

  59. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

    Article  CAS  PubMed  Google Scholar 

  60. Gaussian 09, Revision D. 01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgometry, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. Wallingford CT, 2016.

  61. Tian Lu, Molclus program, Version 1.9. 9.9, http://www.keinsci.com/research/molclus.html

  62. Lawan, N.; Muangpil, S.; Kungwan, N.; Meepowpan, P.; Lee, V. S.; Punyodom, W. Tin (IV) alkoxide initiator design for poly(d-lactide) synthesis using DFT calculations. Comput. Theor. Chem. 2013, 1020, 121–126.

    Article  CAS  Google Scholar 

  63. Della Monica, F.; Luciano, E.; Roviello, G.; Grassi, A.; Milione, S.; Capacchione, C. Group 4 metal complexes bearing thioetherphenolate ligands. coordination chemistry and ring-opening polymerization catalysis. Macromolecules 2014, 47, 2830–2841.

    Article  CAS  Google Scholar 

  64. Chang, M. C.; Lu, W. Y.; Chang, H. Y.; Lai, Y. C.; Chiang, M. Y.; Chen, H. Y.; Chen, H. Y. Comparative study of aluminum complexes bearing N,O- and N,S-Schiff base in ring-opening polymerization of ε-caprolactone and L-lactide. Inorg. Chem. 2015, 54, 11292–11298.

    Article  CAS  PubMed  Google Scholar 

  65. Ligny, R.; Hänninen, M. M.; Guillaume, S. M.; Carpentier, J. F. Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemic γ-lactones. Angew. Chem. Int. Ed. 2017, 129, 10524–10529.

    Article  Google Scholar 

  66. Nifant’ev, I. E.; Shlyakhtin, A. V.; Bagrov, V. V.; Minyaev, M. E.; Churakov, A. V.; Karchevsky, S. G.; Birin, K. P.; Ivchenko, P. V. Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Trans. 2017, 46, 12132–12146.

    Article  PubMed  Google Scholar 

  67. Jitonnom, J.; Molloy, R.; Punyodom, W.; Meelua, W. Theoretical studies on aluminum trialkoxide-initiated lactone ring-opening polymerizations: roles of alkoxide substituent and monomer ring structure. Comput. Theor. Chem. 2016, 1097, 25–32.

    Article  CAS  Google Scholar 

  68. Stevels, W. M.; Ankoné, M. J.; Dijkstra, P. J.; Feijen, J. Kinetics and mechanism of ε-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 1996, 29, 8296–8303.

    Article  CAS  Google Scholar 

  69. O’Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc., Dalton Trans. 2001, 15, 2215–2224.

    Article  Google Scholar 

  70. Chen, E. Y. X. Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem. Rev. 2009, 109, 5157–5214.

    Article  CAS  PubMed  Google Scholar 

  71. Penczek, S.; Cypryk, M.; Duda, A.; Kubisa, P.; Slomkowski, S. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 2007, 32, 247–282.

    Article  CAS  Google Scholar 

  72. Neffgen, S.; Keul, H.; Höcker, H. Ring-opening polymerization of cyclic urethanes and ring-closing depolymerization of the respective polyurethanes. Macromol. Rapid Commun. 1996, 17, 373–382.

    Article  CAS  Google Scholar 

  73. Wu, D. C.; Xu, F. Sun, B. Fu, R. W.; He, H. K.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112, 3959–4015.

    Article  CAS  PubMed  Google Scholar 

  74. Baumgartner, R. Fu, H. L.; Song, Z. Y.; Lin, Y.; Cheng, J. J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem. 2017, 9, 614–622.

    Article  CAS  PubMed  Google Scholar 

  75. Xia, Y. C.; Song, Z. Y.; Tan, Z. Z.; Xue, T. R.; Wei, S. Q.; Zhu, L. Y.; Yang, Y. F.; Fu, H. L.; Jiang, Y. J.; Lin, Y.; Ferguson, A. L.; Cheng, J. J. Accelerated polymerization of N-carboxyanhydrides catalyzed by crown ether. Nat. Commun. 2021, 12, 732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu, X. Y.; Li, G. H.; Zheng, Y. K.; Gao, J. M.; Fu, Y.; Wang, Q. S.; Pan, X. G.; Huang, L.; Ding, J. D. “Invisible” orthodontics by polymeric “clear” aligners molded by 3D-printed personalized dental models. Regen. Biomater. 2022, 9, rbac007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao, J. M.; Ding, X. Q.; Yu, X. Y.; Chen, X. B.; Zhang, X. Y.; Cui, S. Q.; Shi, J. Y.; Chen, J.; Yu, L.; Chen, S. Y.; Ding, J. D. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv. Healthc. Mater. 2021, 10, 1–13.

    Article  CAS  Google Scholar 

  78. Wang, F. S.; Zhao, X. J.; Cao, Y.; Qian, R. Y. A comparison of polyacetylenes prepared with various catalyst systems. Chinese J. Polym. Sci. 1985, 2, 180–184.

    Google Scholar 

  79. Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res. 2012, 45, 788–802.

    Article  CAS  PubMed  Google Scholar 

  80. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166.

    Article  CAS  PubMed  Google Scholar 

  81. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cao, D. L. G.; Guo, W.; Cai, C. Y.; Tang, J. Y.; Rao, W. H.; Wang, Y.; Wang, Y. B.; Yu, L.; Ding, J. D. Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis. Adv. Funct. Mater. 2022, 32, 2206084.

    Article  CAS  Google Scholar 

  83. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  PubMed  Google Scholar 

  84. Yu, H. Y.; Wang, J.; Shao, J. W.; Chen, D.; Wang, S. C.; Wang, L.; Yang, W. T.. Controlled radical polymerization of styrene mediated by xanthene-9-thione and its derivatives. Chinese J. Polym. Sci. 2018, 36, 1303–1311.

    Article  CAS  Google Scholar 

  85. Yu, Y.; Wang, X. L.; Zhu, Y.; He, Y. N.; Xue, H. R.; Ding, J. D. Is polydopamine beneficial for cells on the modified surface. Regen. Biomater. 2022, 9, rbac078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu, X. B.; Ren, B. H. Partners in epoxide copolymerization catalysis: approach to high activity and selectivity. Chinese J. Polym. Sci. 2022, 40, 1331–1348.

    Article  CAS  Google Scholar 

  87. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  CAS  Google Scholar 

  88. Michaelides, A.; Liu, Z. P.; Zhang, C. J.; Alavi, A.; King, D. A.; Hu, P. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 2003, 125, 3704–3705.

    Article  CAS  PubMed  Google Scholar 

  89. Calle-Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 2015, 7, 403–410.

    Article  CAS  PubMed  Google Scholar 

  90. Tran, K.; Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 2018, 1, 696–703.

    Article  CAS  Google Scholar 

  91. Lopato, E. M.; Eikey, E. A.; Simon, Z. C. Back, S.; Tran, K.; Lewis, J.; Kowalewski, J. F.; Yazdi, S.; Kitchin, J. R.; Ulissi, Z. W.; Millstone, J. E.; Bernhard, S. Parallelized screening of characterized and DFT-modeled bimetallic colloidal cocatalysts for photocatalytic hydrogen evolution. ACS Catal. 2020, 10, 4244–4252.

    Article  CAS  Google Scholar 

  92. Shen, T. H.; Yang, Y. Q.; Xu, X. Structure-reactivity relationship for nano-catalysts in the hydrogenation/dehydrogenation controlled reaction systems. Angew. Chem. Int. Ed. 2021, 133, 26546–26549.

    Article  Google Scholar 

  93. Essa, D.; Kondiah, P. P.; Choonara, Y. E.; Pillay, V. The design of poly(lactide-co-glycolide) nanocarriers for medical applications. Front. Bioeng. Biotech. 2020, 8, 48.

    Article  Google Scholar 

  94. Xu, X.; Gao, J. m.; Liu, S. Y.; Chen, L. Chen, M.; Yu, X. Y.; Ma, N.; Zhang, J.; Chen, X. B.; Zhong, L. S.; Yu, L.; Xu, L. M.; Guo, Q. Y.; Ding, J. D. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage. Regen. Biomater. 2021, 8, rbab038.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, G.; Gao, C. Y.; Xiao, B. H.; Zhang, J. Jiang, X. Y.; Wang, Q. S.; Guo, J. Z.; Zhang, D. Y.; Liu, J. X.; Xie, Y. H.; Shu, C. Ding, J. D. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection. Regen. Biomater. 2022, 9, rbac049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, R. Z.; Huang, S.; Zhang, Q. Y.; Yu, X. S.; Hong, K. Z.; Cao, J. R.; Xiao, H.; Wang, Y.; Shuai, X. T. Construction of magnetic resonance imaging visible polymeric vector for efficient tumor targeted siRNA delivery. Chinese J. Polym. Sci. 2022, 40, 1071–1079.

    Article  CAS  Google Scholar 

  97. Gao, C. Y.; Wang, G.; Wang, L.; Wang, Q. S.; Wang, H. C.; Yu, L.; Liu, J. X.; Ding, J. D. A biosurfactant-containing TSD strategy to modify bovine pericardial bioprosthetic valves for anticalcification. Chinese J. Polym. Sci. 2023, 41, 51–66.

    Article  CAS  Google Scholar 

  98. Cao, D. L. G.; Ding, J. D. Recent advances in regenerative biomaterials. Regen. Biomater. 2022, 9, rbac098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No. 52130302). We thank Prof. Xin Xu, Prof. Zhenhua Li, and Prof. Junpo He for their critical reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Dong Ding.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2023_2930_MOESM1_ESM.pdf

Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, WH., Yu, L. & Ding, JD. Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. Chin J Polym Sci 41, 745–759 (2023). https://doi.org/10.1007/s10118-023-2930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2930-6

Keywords

Navigation