Skip to main content
Log in

Green Synthesis of Chemically Recyclable Polyesters via Dehydrogenative Copolymerization of Diols

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Preparation of chemically recyclable polyesters by ring-opening polymerization (ROP) has made a considerable progress over the past few years. However, this method involves cumbersome synthesis and minimal functional diversity of cyclic monomers. Therefore, it is of great significance to develop novel polymerization methods for direct polymerization of commercially available monomers to prepare recyclable polyesters with versatile functionalities. In present work, we report dehydrogenative copolymerization of commercial α,ω-diols to afford high molecular weight chemically recyclable aliphatic copolyesters (65.7 kg·mol−1) by using commercially available Milstein catalyst precursor. The thermal properties of the obtained copolymers could be finely tuned by simply adjusting the feeding ratio of two monomers. The incorporation of aliphatic or aromatic rings into polyester mainchain via copolymerization of 1,10-decanediol with 1,4-cyclohexanedimethanol and 1,4-benzenedimethanol could significantly improve the thermal properties of the resulting copolymers. More importantly, the obtained copolyesters were able to completely depolymerize back to original diols via hydrogenation by the same catalyst in solvent-free and mild conditions, thus offering a green and cost-effective route toward the preparation of widely used polyesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stubbins, A.; Law, K. L.; Muñoz, S. E.; Bianchi, T. S.; Zhu, L. Plastics in the Earth system. Science 2021, 373, 51–55.

    Article  CAS  PubMed  Google Scholar 

  3. Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014, 47, 2390–2396.

    Article  CAS  PubMed  Google Scholar 

  4. Korley, L. T. J.; Epps, T. H., III; Helms, B. A.; Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science 2021, 373, 66–69.

    Article  CAS  PubMed  Google Scholar 

  5. Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev. 2007, 107, 5813–5840.

    Article  CAS  PubMed  Google Scholar 

  6. Feng, Z.; Wu, L.; Dong, H.; Liu, B.; Cheng, R. Copolyesters of ε-caprolactone and L-lactide catalyzed by a tetrabutylammonium phthalimide-N-oxyl organocatalyst. RSC Adv. 2021, 11, 19021–19028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, X.; Shi, C.; Zhang, Z.; Chen, E. Y. X. Toughening biodegradable isotactic poly(3-hydroxybutyrate) via stereoselective copolymerization of a diolide and lactones. Macromolecules 2021, 54, 9401–9409.

    Article  CAS  Google Scholar 

  8. Tang, X.; Westlie, A. H.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angew. Chem. Int. Ed. 2020, 59, 7881–7890.

    Article  CAS  Google Scholar 

  9. Tang, X.; Westlie, A. H.; Watson, E. M.; Chen, E. Y. X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 2019, 366, 754–758.

    Article  CAS  PubMed  Google Scholar 

  10. Kocen, A. L.; Cui, S. L.; Lin, T. W.; LaPointe, A. M.; Coates, G. W. Chemically recyclable ester-linked polypropylene. J. Am. Chem. Soc. 2022, 144, 12613–12618.

    Article  CAS  PubMed  Google Scholar 

  11. Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 2021, 590, 423–427.

    Article  PubMed  Google Scholar 

  12. Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Mater. 2020, 5, 501–516.

    Article  CAS  Google Scholar 

  13. Zhao, J. Z.; Yue, T. J.; Ren, B. H.; Liu, Y.; Ren, W. M.; Lu, X. B. Recyclable sulfur-rich polymers with enhanced thermal, mechanical, and optical performance. Macromolecules 2022, 10.1021/acs.macromol.2c01628.

    Google Scholar 

  14. Liao, X.; Cui, F. C.; He, J. H.; Ren, W. M.; Lu, X. B.; Zhang, Y. T. A sustainable approach for the synthesis of recyclable cyclic CO2-based polycarbonates. Chem. Sci. 2022, 13, 6283–6290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, Y.; Zhou, H.; Guo, J. Z.; Ren, W. M.; Lu, X. B. Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed. 2017, 56, 4862–4866.

    Article  CAS  Google Scholar 

  16. Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem. 2021, 14, 294–303.

    Article  PubMed  Google Scholar 

  17. Fan, H. Z.; Yang, X.; Chen, J. H.; Tu, Y. M.; Cai, Z.; Zhu, J. B. Advancing the development of recyclable aromatic polyesters by functionalization and stereocomplexation. Angew. Chem. Int. Ed. 2022, 61, e202117639.

  18. Tu, Y. M.; Wang, X. M.; Yang, X.; Fan, H. Z.; Gong, F. L.; Cai, Z.; Zhu, J. B. Biobased high-performance aromatic-aliphatic polyesters with complete recyclability. J. Am. Chem. Soc. 2021, 143, 20591–20597.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398–403.

    Article  CAS  PubMed  Google Scholar 

  20. Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, J. B.; Chen, E. Y. X. Living coordination polymerization of a six-five bicyclic lactone to produce completely recyclable polyester. Angew. Chem. Int. Ed. 2018, 57, 12558–12562.

    Article  CAS  Google Scholar 

  22. Zhu, J. B.; Chen, E. Y. X. Catalyst-sidearm-induced stereoselectivity switching in polymerization of a racemic lactone for stereocomplexed crystalline polymer with a circular life cycle. Angew. Chem. Int. Ed. 2019, 58, 1178–1182.

    Article  CAS  Google Scholar 

  23. Tang, X.; Hong, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X The quest for converting biorenewable bifunctional α-methylene-γ-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J. Am. Chem. Soc. 2016, 138, 14326–14337.

    Article  CAS  PubMed  Google Scholar 

  24. Hong, M.; Chen, E. Y. X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 2016, 55, 4188–4193.

    Article  CAS  Google Scholar 

  25. Hong, M.; Tang, X.; Newell, B. S.; Chen, E. Y. X. “Nonstrained” γ-butyrolactone-based copolyesters: copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469–8479.

    Article  CAS  Google Scholar 

  26. Xiong, M. Y.; Schneiderman, D. K.; Bates, F. S.; Hillmyer, M. A.; Zhang, K. C. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl. Acad. Sci. U.S.A 2014, 111, 8357–8362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fahnhorst, G. W.; Hoye, T. R. A Carbomethoxylated polyvalerolactone from malic acid: synthesis and divergent chemical recycling. ACS Macro. Lett. 2018, 7, 143–147.

    Article  CAS  PubMed  Google Scholar 

  28. Li, J.; Liu, F.; Liu, Y.; Shen, Y.; Li, Z. Functionalizable and chemically recyclable thermoplastics from chemoselective ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone. Angew. Chem. Int. Ed. 2022, 61, e202207105.

    CAS  Google Scholar 

  29. Li, C.; Wang, L.; Yan, Q.; Liu, F.; Shen, Y.; Li, Z. Rapid and controlled polymerization of bio-sourced δ-caprolactone toward fully recyclable polyesters and thermoplastic elastomers. Angew. Chem. Int. Ed. 2022, 61, e202201407.

  30. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 2005, 127, 10840–10841.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Ari, E.; Leitus, G.; Shimon, L. J.; Milstein, D. Metal-ligand cooperation in C−H and H2 activation by an electron-rich PNP Ir(I) system: facile ligand dearomatization-aromatization as key steps. J. Am. Chem. Soc. 2006, 128, 15390–15391.

    Article  CAS  PubMed  Google Scholar 

  32. Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 2007, 317, 790–792.

    Article  CAS  PubMed  Google Scholar 

  33. Zeng, H.; Guan, Z. Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines. J. Am. Chem. Soc. 2011, 133, 1159–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gnanaprakasam, B.; Balaraman, E.; Gunanathan, C.; Milstein, D. Synthesis of polyamides from diols and diamines with liberation of H2. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1755–1765.

    Article  CAS  Google Scholar 

  35. Hunsicker, D. M.; Dauphinais, B. C.; Mc Ilrath, S. P.; Robertson, N. J. Synthesis of high molecular weight polyesters via in vacuo dehydrogenation polymerization of diols. Macromol. Rapid Commun. 2012, 33, 232–236.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew. Chem. Int. Ed. 2006, 45, 1113–1115.

    Article  CAS  Google Scholar 

  37. Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J.; Milstein, D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 2010, 132, 16756–16758.

    Article  CAS  PubMed  Google Scholar 

  38. Krall, E. M.; Klein, T. W.; Andersen, R. J.; Nett, A. J.; Glasgow, R. W.; Reader, D. S.; Dauphinais, B. C.; Mc Ilrath, S. P.; Fischer, A. A.; Carney, M. J.; Hudson, D. J.; Robertson, N. J. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(II) PNN pincer complexes. Chem. Commun. 2014, 50, 4884–4887.

    Article  CAS  Google Scholar 

  39. Kumar, A.; von Wolff, N.; Rauch, M.; Zou, Y. Q.; Shmul, G.; Ben-David, Y.; Leitus, G.; Avram, L.; Milstein, D. Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 2020, 142, 14267–14275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang, X.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284–312.

    Article  CAS  Google Scholar 

  41. Gusev, D. G. Dehydrogenative coupling of ethanol and ester hydrogenation catalyzed by pincer-type YNP complexes. ACS Catal. 2016, 6, 6967–6981.

    Article  CAS  Google Scholar 

  42. Gusev, D. G. Rethinking the dehydrogenative amide synthesis. ACS Catal. 2017, 7, 6656–6662.

    Article  CAS  Google Scholar 

  43. Morris, S. A.; Gusev, D. G. Rethinking the Claisen-Tishchenko reaction. Angew. Chem. Int. Ed. 2017, 56, 6228–6231.

    Article  CAS  Google Scholar 

  44. Nguyen, D. H.; Trivelli, X.; Capet, F.; Swesi, Y.; Favre-Réguillon, A.; Vanoye, L.; Dumeignil, F.; Gauvin, R. M. Deeper mechanistic insight into Ru Pincer-mediated acceptorless dehydrogenative coupling of alcohols: exchanges, intermediates, and deactivation species. ACS Catal. 2018, 8, 4719–4734.

    Article  CAS  Google Scholar 

  45. Gusev, D. G. Revised mechanisms of the catalytic alcohol dehydrogenation and ester reduction with the Milstein PNN complex of ruthenium. Organometallics 2020, 39, 258–270.

    Article  CAS  Google Scholar 

  46. Li, H.; Hall, M. B. Computational mechanistic studies on reactions of transition metal complexes with noninnocent pincer ligands: aromatization-dearomatization or not. ACS Catal. 2015, 5, 1895–1913.

    Article  CAS  Google Scholar 

  47. Cho, D.; Ko, K. C.; Lee, J. Y. Catalytic mechanism for the ruthenium-complex-catalyzed synthesis of amides from alcohols and amines: a DFT study. Organometallics 2013, 32, 4571–4576.

    Article  CAS  Google Scholar 

  48. Li, H.; Wang, X.; Wen, M.; Wang, Z. X. Computational insight into the mechanism of selective imine formation from alcohol and amine catalyzed by the ruthenium(II)-PNP Pincer complex. Eur. J. Inor. Chem. 2012, 2012, 5011–5020.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22061027 and 22261034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ran Yang or Chang-Guang Yao.

Additional information

Conflict of Interests

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WM., Yu, YD., Ma, MX. et al. Green Synthesis of Chemically Recyclable Polyesters via Dehydrogenative Copolymerization of Diols. Chin J Polym Sci 41, 1206–1214 (2023). https://doi.org/10.1007/s10118-023-2903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2903-9

Keywords

Navigation