Skip to main content
Log in

Structural Evolution of PGA Nascent Fiber during Single Low-Temperature and Segmented High-Temperature Hot Stretching

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyglycolide (PGA) fibers applied as surgical sutures strongly depend on their microstructure. The structural evolution of PGA nascent fibers during single low-temperature stretching and segmented high-temperature stretching was analyzed based on a combination of in situ WAXD/SAXS and DSC measurements. The results indicated that the hot stretching was conducive to the crystal perfection and the local fragmentation and recrystallization of the lamellar crystals may occur under stress induction. The single low-temperature stretching of PGA nascent fibers could be divided into three stages: the stretching of amorphous regions, stretch-induced crystallization and the stretching of crystalline regions. The elongation at break of the fibers can be substantially increased by adopting a segmented stretching method, and the high-temperature stretching can also significantly increase the crystallinity and orientation. The amorphous orientation peak appearing in the low-temperature stretching was gradually converted to crystallization peak during the heating process, which greatly improved the crystallinity and orientation of the fibers. High-temperature stretching compared with low-temperature stretching was more favorable for crystal perfection and structural evolution, where lamellar crystals underwent stress-induced fragmentation recrystallization to transform to fibrous crystals as the strain increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malmir, S.; Montero, B.; Rico, M.; Barral, L.; Bouza, R.; Farrag, Y. Effects of poly(3-hydroxybutyrate-co-hydroxyvalerate) microparticles on morphological, mechanical, thermal, and barrier properties in thermoplastic potato starch films. Carbohydr. Polym. 2018, 194, 357–364.

    CAS  PubMed  Google Scholar 

  2. Williams, C.K.; Hillmyer, M.A. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym. Rev. 2008, 48, 1–10.

    CAS  Google Scholar 

  3. Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000, 21, 117–132.

    CAS  Google Scholar 

  4. Wei, Y.H.; Xia, G. Q.; Wang, Y. S. Biodegradable polymer materials used in biomedical field. J. Yunnan Uni. 2004, 26, 121–124.

    Google Scholar 

  5. Zhu, Y. Q.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    CAS  PubMed  Google Scholar 

  6. Malinova, V.; Meier, W. Polymer materials for biomedical applications. RSC Nanosci. Nanotechnol. 2010, 3, 3–15.

    Google Scholar 

  7. Zhao, Y.; Zhu, B.; Wang, Y.; Liu, C., Shen, C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater. Sci. Eng. 2019, 105, 110041.

    CAS  Google Scholar 

  8. Fang, Y.; Li, Z.; Qiu, Z. Miscibility and crystallization behavior of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/phenolic blends. J. Appl. Polym. Sci. 2011, 123, 2781–2786.

    Google Scholar 

  9. Doppalapudi, S.; Jain, A.; Khan, W.; Domb, A. J. Biodegradable polymers—an overview. Polymer 2014, 25, 427–435.

    CAS  Google Scholar 

  10. Wisniewska, K.; Rybak, Z.; Watrobinski, M.; Struszczyk, M. H.; Filipiak, J.; Zywicka, B.; Szymonowicz, M. Bioresorbable polymeric materials-current state of knowledge. Polimery 2021, 66, 3–10.

    CAS  Google Scholar 

  11. Naira, L. S.; Laurencina, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798.

    Google Scholar 

  12. Liang, H. G.; Huang, K. Development status and trend of biomedical polymer materials. New Mater. Ind. 2016, 2, 12–15.

    Google Scholar 

  13. Landes, C. A.; Ballon, A.; Roth, C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast. Reconstr. Surg. 2006, 117, 2347–2360.

    CAS  PubMed  Google Scholar 

  14. Singhal, J. P.; Singh, H.; Ray, A. R. Absorbable suture materials: preparation and properties. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1988, 28, 475–502.

    Google Scholar 

  15. Gomzyak, V. I.; Demina, V. A.; Razuvaeva, E. V.; Sedush, N. G.; Chvalun, S. N. Biodegradable polymer scaffolds to regenerate organs. Fine Chem. Technol. 2017, 12, 5–20.

    CAS  Google Scholar 

  16. Lim, L. T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852.

    CAS  Google Scholar 

  17. Shawe, S.; Buchanan, F.; Harkin-Jones, E.; Farrar, D. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J. Mater. Sci. 2006, 41, 4832–4838.

    CAS  Google Scholar 

  18. Gilding, D. K.; Reed, A. M. Biodegradable polymers for use in surgery-polyglycolic/poly(lactic acid) homo- and copolymers. Polymer 1979, 20, 1459–1464.

    CAS  Google Scholar 

  19. Cui, A.J.; Li, Z.F.; C, Q.; He, M. Y. Biodegradable material polyhydroxyacetic acid and its crystallization properties. New. Che. Mater. 2012, 40, 87–90.

    CAS  Google Scholar 

  20. Martin, O.; Avérous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219.

    CAS  Google Scholar 

  21. Fu, B. X.; Hsiao, B. S.; Chen, G.; Zhou, J.; Lin, S.; Yuan, J.; Koyfman, I.; Jamiolkowski, D. D.; Dormier, E. A study of structure and property changes of biodegradable polyglycolide and poly(glycolide-co-lactide) fibers during processing and in vitro degradation. Chinese J. Polym. Sci. 2003, 21, 159–167.

    CAS  Google Scholar 

  22. Fu, B. X.; Hsiao, B. S.; Chen, G.; Zhou, J.; Koyfman, I.; Jamiolkowski, D.; Dormier, E. Structure and property studies of bioabsorbable poly(glycolide-co-lactide) fiber during processing and in vitro degradation. Polymer 2002, 43, 5527–5534.

    CAS  Google Scholar 

  23. Zong, X. H.; Wang, Z. G.; Hsiao, B. S.; Chu, B.; Zhou, J. J.; Jamiolkowski, D. D.; Muse, E.; Dormier, E. Structure and morphology changes in absorbable poly(glycolide) and poly(glycolide-co-lactide) during in vitro degradation. Macromolecules 1999, 32, 8107–8114.

    CAS  Google Scholar 

  24. Wang, Y.; Li, M.; Shen, C. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Mater. Lett. 2011, 65, 3525–3528.

    CAS  Google Scholar 

  25. Wang, Y. M.; Li, M.; Wang, K. J.; Shao, C. G.; Li, Q.; Shen, C. Y. Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter 2014, 10, 1512–1518.

    CAS  PubMed  Google Scholar 

  26. Shen, C. Y.; Wang, Y. M.; Li, M.; Hu, D. F. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 409–413.

    CAS  Google Scholar 

  27. Lorenzo, A. T.; Arnal, M. L.; Sanchez, J. J.; Muller, A. J. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1738–1750.

    CAS  Google Scholar 

  28. Yan, R. J. Uniaxial tensile and oriented structure of crystalline polymers. I. Deformation mechanism of tensile crystalline polymers. Polym. Bull. 1993, 230–233.

  29. Yan, R. J. Uniaxial tensile and oriented structure of crystalline polymers. II. Structural model and plastic deformation of oriented crystalline polymers. Polym. Bull. 1994, 26–30.

  30. Termonia, Y., Smith, P. Kinetic model for tensile deformation of polymers. 5. Effect of temperature on orientation efficiency. Macromolecules 1993, 26, 3738–3741.

    CAS  Google Scholar 

  31. Li, J. Structure and properties of glycolide-L-lactide copolymer fiber during drawing. Tianjin University, 2007.

  32. Li, J.; Huang, Q.; Li, X. Crystallization and orientation of P(GA-co-LA) fibers during drawing process. J. Textile Res. 2011, 32, 1–5.

    Google Scholar 

  33. Huang, Q.; Gao, X. S.; Xu, J. G.; Li, J.; Wu, P. F. The crystallization properties of P(GA-co-LA) fibers during molding. Synthetic Fiber 2009, 12, 9–13.

    Google Scholar 

  34. Mu, W. M.; Zheng, Q. J. Development of polyglycolide and polyglycolide suture. Synthetic Fiber 1991, 020, 24–29.

    Google Scholar 

  35. Dong, Z.; Miao, Y.; Cui, H.; Huang, Q.; Li, Y.; Wang, Z. Structural evolution of polyglycolide and poly(glycolide-co-lactide) fibers during heat-setting. Biomacromolecules 2021, 22, 3342–3356.

    CAS  PubMed  Google Scholar 

  36. Hammersley, A.P.; Svensson, S.O.; Thompson, A. Calibration and correction of spatial distortions in 2D detector systems. Rev. Sci. Instrum. 1995, 346, 312–321.

    Google Scholar 

  37. Li, S. M.; Vert, M. Biodegradation of aliphatic polyesters. Degrad. Polym. 2002, 4, 123–135.

    Google Scholar 

  38. Alexander, L. E. X-ray diffraction methods in polymer science. J. Mol. Struct. 1971, 6, 93.

    Google Scholar 

  39. Kortleve, G.; Vonk, C. G. X-ray small-angle scattering of bulk polyethylene. J. Mol. Struct. 1968, 225, 124–131.

    CAS  Google Scholar 

  40. Tang, Y.; Jiang, Z.; Men, Y. Uniaxial deformation of overstretched polyethylene: in situ synchrotron small angle X-ray scattering study. Polymer 2007, 48, 5125–5132.

    CAS  Google Scholar 

  41. Ruland, W. Small-angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., Part C: Polym. Symp. 1969, 28, 143–151.

    Google Scholar 

  42. Perret, R.; Ruland, W. Single and multiple X-ray small-angle scattering of carbon fibers. J. Appl. Crystallogr. 1969, 2, 209–218.

    CAS  Google Scholar 

  43. Qian, R.; Wu, L.; Shen, D.; Napper, D. H.; Mann, R. A.; Sangster, D. F. Single-chain polystyrene glasses. Macromolecules 1993, 26, 2950–2953.

    CAS  Google Scholar 

  44. Qian, R. Some basic physical problems of polymer condensation state. Bull. Chin. Acad. Sci. 2000, 3, 174–177.

    Google Scholar 

  45. Ran, S. F.; Wang, Z. G.; Burger, C. B.; Chu, B.; Hsiao, B. S. Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film. Macromolecules 2002, 35, 10102–10107.

    CAS  Google Scholar 

  46. Sato, H.; Miyada, M.; Yamamoto, S.; Raghunatha Reddy, K.; Ozaki, Y. C−HO (ether) hydrogen bonding along the (110) direction in polyglycolic acid studied by infrared spectroscopy, wide-angle X-ray diffraction, quantum chemical calculations and natural bond orbital calculations. RSC Adv. 2016, 6, 16817–16823.

    CAS  Google Scholar 

  47. Lee, S.; Hongo, C.; Nishino, T. Crystal modulus of poly(glycolic acid) and its temperature dependence. Macromolecules 2017, 50, 5074–5079.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973097 and 52173021) and the Open Fund of State Key Laboratory of Biobased Fiber Manufacturing Technology (No. SKL202207). We thank Shanghai Synchrotron Radiation Facility (SSRF) for supporting the SAXS and WAXD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Bao Wang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, YS., Cui, HS., Guo, J. et al. Structural Evolution of PGA Nascent Fiber during Single Low-Temperature and Segmented High-Temperature Hot Stretching. Chin J Polym Sci 41, 1078–1092 (2023). https://doi.org/10.1007/s10118-023-2892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2892-8

Keywords

Navigation