Skip to main content

Advertisement

Log in

Ultra-robust Metallosupramolecular Hydrogels with Unprecedented Self-recoverability using Asymmetrically Distributed Carboxyl-Fe3+ Coordination Interactions

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Recently, numerous mechanically robust synthetic hydrogels have been created. However, unlike natural loading-bearing materials such as cartilages and muscles, most hydrogels have inherently contradictory requirements, obstructing the design of hydrogels with characteristics of robustness and rapid self-recoverability. Herein, we present a facile strategy for constructing mechanically robust and rapidly self-recoverable hydrogels. The linear poly(acrylamide-co-itaconic acid) chains crosslink via coordination bonds and minimal chemical crosslinkers to form the hydrogel network. Such design endows the coordination interactions to be asymmetrically distributed. Under deformation, the coordination interactions exhibit a reversible dissociation-and-reorganization property, demonstrating a new mechanism for energy dissipation and stress redistribution. Thus, the hydrogels possess tensile strength up to 12.5 MPa and toughness up to 28.2 MJ/m3. Moreover, the inherent dynamic nature of the coordination bonds imparts these hydrogels with stretch rate- and temperature-dependent mechanical behavior as well as excellent self-recovery performance. The method employed in this study is universal and is applicable to other polymers with load-bearing yet rapid recovery conditions. This study will facilitate diverse applications of most metallosupramolecular hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gjorevski, N.; Nikolaev, M.; Brown, T. E.; Mitrofanova, O.; Brandenberg, N.; DelRio, F. W.; Yavitt, F. M.; Liberali, P.; Anseth, K. S.; Lutolf, M. P. Tissue geometry drives deterministic organoid patterning. Science 2022, 375, eaaw9021.

    Article  CAS  Google Scholar 

  2. Miao, S.; Castro, N.; Nowicki, M.; Xia, L.; Cui, H.; Zhou, X.; Zhu, W.; Lee, S. Jun; Sarkar, K.; Vozzi, G.; Tabata, Y.; Fisher, J.; Zhang, L. G. 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today 2017, 20, 577–591.

    Article  CAS  Google Scholar 

  3. Zhu, J.; Yang, S.; Qi, Y.; Gong, Z.; Zhang, H.; Liang, K.; Shen, P.; Huang, Y.; Zhang, Z.; Ye, W.; Yue, L.; Fan, S.; Shen, S.; Mikos, A. G.; Wang, X.; Fang, X. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 2022, 8, eabk0011.

    Article  CAS  Google Scholar 

  4. Liang, Q.; Xia, X.; Sun, X.; Yu, D.; Huang, X.; Han, G.; Mugo, S. M.; Chen, W.; Zhang, Q. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals. Adv. Sci. 2022, 2201059.

  5. Zhang, C.; Wang, M.; Jiang, C.; Zhu, P.; Sun, B.; Gao, Q.; Gao, C.; Liu, R. Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 2022, 95, 106991.

    Article  CAS  Google Scholar 

  6. Zhuo, S.; Song, C.; Rong, Q.; Zhao, T.; Liu, M. Shape and stiffness memory ionogels with programmable pressure-resistance response. Nat. Commun. 2022, 13, 1743.

    Article  CAS  Google Scholar 

  7. Li, J.; Jiang, Z.; Wang, Y.; Zheng, J.; Huang, G. Stability, seepage and displacement characteristics of heterogeneous branched-preformed particle gels for enhanced oil recovery. RSC Adv. 2018, 8, 4881–4889.

    Article  CAS  Google Scholar 

  8. Yin, H.; Yin, X.; Cao, R.; Zeng, P.; Wang, J.; Wu, D.; Luo, X.; Zhu, Y.; Zheng, Z.; Feng, Y. In situ crosslinked weak gels with ultralong and tunable gelation times for improving oil recovery. Chem. Eng. J. 2021, 432, 134350.

    Article  Google Scholar 

  9. Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216.

    Article  CAS  Google Scholar 

  10. Cao, Z.; Wang, Y.; Wang, H.; Ma, C.; Li, H.; Zheng, J.; Wu, J.; Huang, G. Tough, ultrastretchable and tear-resistant hydrogels enabled by linear macro-cross-linker. Polym. Chem. 2019, 10, 3503–3513.

    Article  CAS  Google Scholar 

  11. Hua, M.; Wu, S.; Ma, Y.; Zhao, Y.; Chen, Z.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X.; He, X. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

    Article  CAS  Google Scholar 

  12. Liu, X.; Wu, J.; Qiao, K.; Liu, G.; Wang, Z.; Lu, T.; Suo, Z.; Hu, J. Topoarchitected polymer networks expand the space of material properties. Nat. Commun. 2022, 13, 1622.

    Article  CAS  Google Scholar 

  13. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Doublenetwork hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

    Article  CAS  Google Scholar 

  14. Gong, J. P. Why are double network hydrogels so tough. Soft Matter 2010, 6, 2583–2590.

    Article  CAS  Google Scholar 

  15. Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081.

    Article  CAS  Google Scholar 

  16. Liu, R.; Wang, H.; Lu, W.; Cui, L.; Wang, S.; Wang, Y.; Chen, Q.; Guan, Y.; Zhang, Y. Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor. Chem. Eng. J. 2021, 415, 128839.

    Article  CAS  Google Scholar 

  17. Hu, J.; Hiwatashi, K.; Kurokawa, T.; Liang, S. M.; Wu, Z. L.; Gong, J. P. Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure. Macromolecules 2011, 44, 7775–7781.

    Article  CAS  Google Scholar 

  18. Xia, L. W.; Xie, R.; Ju, X. J.; Wang, W.; Chen, Q.; Chu, L. Y. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 2013, 4, 1–11.

    Article  Google Scholar 

  19. Nan, W.; Wang, W.; Gao, H.; Liu, W. Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 2013, 9, 132–137.

    Article  CAS  Google Scholar 

  20. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. Bin; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937.

    Article  CAS  Google Scholar 

  21. Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 2015, 27, 2054–2059.

    Article  CAS  Google Scholar 

  22. Hu, Y.; Du, Z.; Deng, X.; Wang, T.; Yang, Z.; Zhou, W.; Wang, C. Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 2016, 49, 5660–5668.

    Article  CAS  Google Scholar 

  23. Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 2016, 49, 9637–9646.

    Article  CAS  Google Scholar 

  24. Cao, J.; Li, J.; Chen, Y.; Zhang, L.; Zhou, J. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv. Funct. Mater. 2018, 28, 1800739.

    Article  Google Scholar 

  25. Ma, C.; Wang, Y.; Jiang, Z.; Cao, Z.; Yu, H.; Huang, G.; Wu, Q.; Ling, F.; Zhuang, Z.; Wang, H.; Zheng, J.; Wu, J. Wide-range linear viscoelastic hydrogels with high mechanical properties and their applications in quantifiable stress-strain sensors. Chem. Eng. J. 2020, 399, 125697.

    Article  CAS  Google Scholar 

  26. Yu, H. C.; Zheng, S. Y.; Fang, L.; Ying, Z.; Du, M.; Wang, J.; Ren, K. F.; Wu, Z. L.; Zheng, Q. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv. Mater. 2020, 32, 2005171.

    Article  CAS  Google Scholar 

  27. Jiao, C.; Zhang, J.; Liu, T.; Peng, X.; Wang, H. Mechanically strong, tough, and shape deformable poly(acrylamide-co-vinylimidazole) hydrogels based on Cu2+ complexation. ACS Appl. Mater. Interfaces 2020, 12, 44205–44214.

    Article  CAS  Google Scholar 

  28. Yu, H. C.; Hao, X. P.; Zhang, C. W.; Zheng, S. Y.; Du, M.; Liang, S.; Wu, Z. L.; Zheng, Q. Engineering tough metallosupramolecular hydrogel films with kirigami structures for compliant soft electronics. Small 2021, 17, 2103836.

    Article  CAS  Google Scholar 

  29. Sun, J. Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

    Article  CAS  Google Scholar 

  30. Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-srrength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 51873110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zheng or Jin-Rong Wu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2818_MOESM1_ESM.pdf

Ultra-robust Metallosupramolecular Hydrogels with Unprecedented Self-recoverability using Asymmetrically Distributed Carboxyl-Fe3+ Coordination Interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, ZY., Cao, ZX., Wu, R. et al. Ultra-robust Metallosupramolecular Hydrogels with Unprecedented Self-recoverability using Asymmetrically Distributed Carboxyl-Fe3+ Coordination Interactions. Chin J Polym Sci 41, 250–257 (2023). https://doi.org/10.1007/s10118-022-2818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2818-x

Keywords

Navigation