Skip to main content
Log in

Generating Microstructures with Highly Variable Mechanical Performance using Two-Photon Lithography and Thiol-ene Photopolymerization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we investigate the effect of the exposure dose on the mechanical property of the photoresins generated with acrylate self-polymerization and thiol-ene polymerization. The results indicate that the mechanical performance of the thiol-ene photoresin is highly depended on the exposure dose during the solidification process. With 350-fold exposure dose change, the stiffness of the thiol-ene photoresin reached more that 700-fold change compare to 14-fold of the acrylate photoresin. We developed a TPL photoresist based on our results and show the capability to fabricate microstrucutres with high resolution and variable mechanical performances using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, D.; Sharafudeen, K. N.; Yue, Y.; Qiu, J. Progress in materials science femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 2016, 76, 154–228.

    Article  Google Scholar 

  2. Rajabasadi, F.; Schwarz, L.; Medina-Sánchez, M.; Schmidt, O. G. 3D and 4D lithography of untethered microrobots. Prog. Mater. Sci. 2021, 120, 100808.

    Article  CAS  Google Scholar 

  3. Sugioka, K.; Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, 149.

    Article  Google Scholar 

  4. Sun, L.; Ni, H.; Liu, X.; Zhang, D.; Zeng, Y.; Han, X.; Jiang, L.; Chen, H.; Zhao, X.; Gu, Z. 3D printed asymmetric nanoprobe for plasmonic nanofocusing under internal illumination. ACS Photon. 2018, 5, 4872–4879.

    Article  CAS  Google Scholar 

  5. Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 2016, 10, 554–560.

    Article  CAS  Google Scholar 

  6. Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

    Article  CAS  Google Scholar 

  7. Liu, X.; Gu, H.; Ding, H.; Du, X.; Wei, M.; Chen, Q.; Gu, Z. 3D bioinspired microstructures for switchable repellency in both air and liquid. Adv. Sci. 2020, 7, 202000878.

    Article  Google Scholar 

  8. Liu, X.; Gu, H.; Ding, H.; Du, X.; He, Z.; Sun, L.; Liao, J.; Xiao, P.; Gu, Z. Programmable liquid adhesion on bio-inspired re-entrant structures. Small 2019, 15, 1902360

    Article  Google Scholar 

  9. You, S.; Li, J.; Zhu, W.; Yu, C.; Mei, D.; Chen, S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J. Mater. Chem. B 2018, 6, 2187–2197.

    Article  CAS  Google Scholar 

  10. Hippler, M.; Lemma, E. D.; Bertels, S.; Blasco, E.; Barner-kowollik, C.; Wegener, M.; Bastmeyer, M. 3D scaffolds to study basic cell biology. Adv. Mater. 2019, 31, 1808110.

    Article  Google Scholar 

  11. Lemma, E. D.; Spagnolo, B.; de Vittorio, M.; Pisanello, F. Studying cell mechanobiology in 3D: the two-photon lithography approach. Trends Biotechnol. 2019, 37, 358–372.

    Article  CAS  Google Scholar 

  12. Yu, H.; Liu, J.; Zhao, Y. Y.; Jin, F.; Dong, X. Z.; Zhao, Z. S.; Duan, X. M.; Zheng, M. L. Biocompatible three-dimensional hydrogel cell scaffold fabricated by sodium hyaluronate and chitosan assisted two-photon polymerization. ACS Appl. Bio. Mater. 2019, 2, 3077–3083.

    Article  CAS  Google Scholar 

  13. Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.

    Article  CAS  Google Scholar 

  14. Huang, T. Y.; Sakar, M. S.; Mao, A.; Petruska, A. J.; Qiu, F.; Chen, X. B.; Kennedy, S.; Mooney, D.; Nelson, B. J. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 2015, 27, 6644–6650.

    Article  CAS  Google Scholar 

  15. Bauer, J.; Guell Izard, A.; Zhang, Y.; Baldacchini, T.; Valdevit, L. Programmable mechanical properties of two-photon polymerized materials: from nanowires to bulk. Adv. Mater. Technol. 2019, 4, 1900146.

    Article  CAS  Google Scholar 

  16. Zhang, X.; Wang, Y.; Ding, B.; Li, X. Design, fabrication, and mechanics of 3D micro-/nanolattices. Small 2020, 16, 1902842.

    Article  CAS  Google Scholar 

  17. Nautiyal, P.; Wiedorn, V.; Thomas, T.; Bacca, N.; White, A.; Agarwal, A. Unraveling the mechanisms governing anisotropy in accordion-shaped honeycomb microlattice fabricated by two-photon polymerization. Adv. Eng. Mater. 2021, 2101190.

    Google Scholar 

  18. Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; Spadaccini, C. M. Multiscale metallic metamaterials. Nat. Mater. 2016, 15, 1100–1106.

    Article  CAS  Google Scholar 

  19. Diamantopoulou, M.; Karathanasopoulos, N.; Mohr, D. Stressstrain response of polymers made through two-photon lithography: micro-scale experiments and neural network modeling. Addit. Manuf. 2021, 47, 102266

    CAS  Google Scholar 

  20. Peterson, G. I.; Schwartz, J. J.; Zhang, D.; Weiss, B. M.; Ganter, M. A.; Storti, D. W.; Boydston, A. J. Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS Appl. Mater. Interfaces 2016, 8, 29037–29043.

    Article  CAS  Google Scholar 

  21. Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H. J. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 2019, 5, 5790.

    Article  Google Scholar 

  22. Lay, C. L.; Sher, C.; Koh, L.; Lee, Y. H.; Phan-quang, G. C.; Yi, H.; Sim, F.; Leong, S. X.; Han, X.; Phang, I. Y.; Ling, X. Y. Two-photon-assisted polymerization and reduction: emerging formulations and applications. ACS Appl. Mater. interfaces 2020, 12, 10061–10079.

    Article  CAS  Google Scholar 

  23. Hoyle, C. E.; Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540–1573.

    Article  CAS  Google Scholar 

  24. Hoorick, J. Van; Dobos, A.; Markovic, M.; Gheysens, T.; Van Damme, L. Thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing. Biofabrication 2021, 13, 015017.

    Article  Google Scholar 

  25. Ulrich, S.; Wang, X.; Rottmar, M.; Rossi, R. M.; Nelson, B. J.; Bruns, N.; Müller, R.; Maniura-weber, K.; Qin, X.; Boesel, L. F. Nano-3D-printed photochromic micro-objects. Small 2021, 17, 2101337.

    Article  CAS  Google Scholar 

  26. Quick, A. S.; Fischer, J.; Richter, B.; Pauloehrl, T.; Trouillet, V.; Wegener, M.; Barner-kowollik, C. Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry. Macromol. Rapid Commun. 2013, 34, 335–340.

    Article  CAS  Google Scholar 

  27. Leonards, H.; Engelhardt, S.; Hoffmann, A.; Pongratz, L.; Schriever, S.; Bläsius, J.; Wehner, M.; Gillner, A. Advantages and drawbacks of thiol-ene based resins for 3D-printing. Proc. of SPIE 2015, 9353, 93530.

    Article  Google Scholar 

  28. Buruiana, E. C.; Jitaru, F.; Matei, A.; Dinescu, M.; Buruiana, T. Influence of UV irradiation and two photon processing on the cinnamate monomers polymerization and formation of hybrid composites with nanosized ZnO. Eur. Polym. J. 2012, 48, 1976–1987.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22002015 and 52033002), the Fundamental Research Funding from Jiangsu Province (No. BK20211560) and the Fundamental Research Funds for the Central Universities (No. 2242018R20011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Du or Zhong-Ze Gu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2802_MOESM1_ESM.pdf

Generating Microstructures with Highly Variable Mechanical Performance using Two-Photon Lithography and Thiol-ene Photopolymerization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Niu, YF., Wei, MX. et al. Generating Microstructures with Highly Variable Mechanical Performance using Two-Photon Lithography and Thiol-ene Photopolymerization. Chin J Polym Sci 41, 67–74 (2023). https://doi.org/10.1007/s10118-022-2802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2802-5

Keywords

Navigation