Skip to main content
Log in

An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Uveitis is a sophisticated syndrome showing a high relevance with reactive oxygen species (ROS). Herein, an ROS-responsive PEGylated polypeptide based macromolecular prodrug of herbaceous antioxidant ethyl caffeate (EC) is designed via phenylboronic esters with improved solubility for the alleviation of uveitis. The antioxidative 4-hydroxybenzyl alcohol (HBA) and EC can be released from the macromolecular EC prodrug under the stimulation of ROS, which can effectively protect cells against oxidative stress-induced injury in an ROS-depletion way. The antioxidative and protective effects of the macromolecular EC prodrug in vivo are further verified in a uveitis mouse model. Overall, this work not only provides a handy method to synthesize a phenylboronic ester-bearing EC prodrug which is highly sensitive to pathological ROS, but also depicts a promising future to apply macromolecular antioxidative prodrugs in the treatment of uveitis as well as other ROS-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, R. W.; Nicholson, L. B.; Sen, H. N.; Chan, C. C.; Wei, L.; Nussenblatt, R. B.; Dick, A. D. Autoimmune and autoinflammatory mechanisms in uveitis. Semin. Immunopathol. 2014, 36, 581–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, W.; He, B.; Dai, W.; Zhang, Q.; Liu, Y. Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis. Int. Ophthalmol. 2014, 34, 465–476.

    Article  PubMed  Google Scholar 

  3. Mahran, A.; Ismail, S.; Allam, A. A. Development of triamcinolone acetonide-loaded microemulsion as a prospective ophthalmic delivery system for treatment of uveitis: in vitro and in vivo evaluation. Pharmaceutics 2021, 13, 444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shome, A.; Mugisho, O. O.; Niederer, R. L.; Rupenthal, I. D. Blocking the inflammasome: a novel approach to treat uveitis. Drug Discov. Today 2021, 26, 2839–2857.

    Article  CAS  PubMed  Google Scholar 

  5. Garg, V.; Nirmal, J.; Riadi, Y.; Kesharwani, P.; Kohli, K.; Jain, G. K. Amelioration of endotoxin-induced uveitis in rabbit by topical administration of tacrolimus proglycosome nano-vesicles. Pharm. Sci. 2021, 110, 871–875.

    Article  CAS  Google Scholar 

  6. Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J. L.; Liew, G.; White, A. J. R. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin. Sci. 2017, 131, 2865–2883.

    Article  CAS  Google Scholar 

  7. Xu, Q. Y.; Zhang, J.; Qin, T. Y.; Bao, J. Y.; Dong, H. T.; Zhou, X. R.; Hou, S. P.; Mao, L. M. The role of the inflammasomes in the pathogenesis of uveitis. Exp. Eye Res. 2021, 208, 108618.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, R.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11, 136–140.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad, A.; Ahsan, H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders. J. Immunoassay Immunochem. 2020, 41, 257–271.

    Article  CAS  PubMed  Google Scholar 

  10. Choulaki, C.; Papadaki, G.; Repa, A.; Kampouraki, E.; Kambas, K.; Ritis, K.; Bertsias, G.; Boumpas, D. T.; Sidiropoulos, P. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ou, A. T.; Zhang, J. X.; Fang, Y. F.; Wang, R.; Tang, X. P.; Zhao, P. F.; Zhao, Y. G.; Zhang, M.; Huang, Y. Z. Disulfiram-loaded lactoferrin nanoparticles for treating inflammatory diseases. Acta Pharmacol. Sin. 2021, 42, 1913–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mishra, S. R.; Mahapatra, K. K.; Behera, B. P.; Patra, S.; Bhol, C. S.; Panigrahi, D. P.; Praharaj, P. P.; Singh, A.; Patil, S.; Dhiman, R.; Bhutia, S. K. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int. J. Biochem. Cell Biol. 2021, 136, 106013.

    Article  CAS  PubMed  Google Scholar 

  13. van der Vliet, A.; Janssen-Heininger, Y. M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger. J. Cell. Biochem. 2014, 115, 427–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150.

    Article  CAS  PubMed  Google Scholar 

  15. Yadav, U. C. S.; Kalariya, N. M.; Ramana, K. V. Emerging role of antioxidants in the protection of uveitis complications. Curr. Med. Chem. 2011, 18, 931–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Z.; Li, H.; Zhang, J.; Liu, X.; Gu, Z.; Li, Y. Ultrasmall nanoparticle ROS scavengers based on polyhedral oligomeric silsesquioxanes. Chinese J. Polym. Sci. 2020, 38, 1149–1156.

    Article  CAS  Google Scholar 

  17. Granata, G.; Paterniti, I.; Geraci, C.; Cunsolo, F.; Esposito, E.; Cordaro, M.; Blanco, A. R.; Cuzzocrea, S.; Consoli, G. M. L. Potential eye drop based on a calix[4]arene nanoassembly for curcumin delivery: enhanced drug solubility, stability, and anti-inflammatory effect. Mol. Pharm. 2017, 14, 1610–1622.

    Article  CAS  PubMed  Google Scholar 

  18. Deng, J.; Lin, D. Q.; Ding, X. Y.; Wang, Y.; Hu, Y. H.; Shi, H.; Chen, L.; Chu, B. Y.; Lei, L.; Wen, C. M.; Wang, J. Q.; Qian, Z. Y.; Li, X. Y. Multifunctional supramolecular filament hydrogel boosts anti-inflammatory efficacy in vitro and in vivo. Adv. Funct. Mater. 2022, 32, 2109173.

    Article  CAS  Google Scholar 

  19. Masuda, T.; Yamada, K.; Akiyama, J.; Someya, T.; Odaka, Y.; Takeda, Y.; Tori, M.; Nakashima, K.; Maekawa, T.; Sone, Y. Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation. J. Agric. Food Chem. 2008, 56, 5947–5952.

    Article  CAS  PubMed  Google Scholar 

  20. Chiang, Y. M.; Lo, C. P.; Chen, Y. P.; Wang, S. Y.; Yang, N. S.; Kuo, Y. H.; Shyur, L. F. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br. J. Pharmacol. 2005, 146, 352–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao, Y. W.; Tseng, H. W.; Liang, W. L.; Chen, I. S.; Chen, S. T.; Lee, M. H. Anti-inflammatory and free radial scavenging activities of the constituents isolated from Machilus zuihoensis. Molecules 2011, 16, 9451–9466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kularatne, R. N.; Bulumulla, C.; Catchpole, T.; Takacs, A.; Christie, A.; Stefan, M. C.; Csaky, K. G. Protection of human retinal pigment epithelial cells from oxidative damage using cysteine prodrugs. Free Radic. Biol. Med. 2020, 152, 386–394.

    Article  CAS  PubMed  Google Scholar 

  23. Muangnoi, C.; Phumsuay, R.; Jongjitphisut, N.; Waikasikorn, P.; Sangsawat, M.; Rashatasakhon, P.; Paraoan, L.; Rojsitthisak, P. Protective effects of a lutein ester prodrug, lutein diglutaric acid, against H2O2-induced oxidative stress in human retinal pigment epithelial cells. Int. J. Mol. Sci. 2021, 22, 4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, C.; Lu, H. Helical nonfouling polypeptides for biomedical applications. Chinese J. Polym. Sci. 2022, 40, 433–446.

    Article  CAS  Google Scholar 

  25. Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y.; Li, D.; Ding, J.; Chen, X. Controlled synthesis of polypeptides. Chin. Chem. Lett. 2020, 31, 3001–3014.

    Article  CAS  Google Scholar 

  27. Ren, J.; Shu, X.; Wang, Y.; Wang, D.; Wu, G.; Zhang, X.; Jin, Q.; Liu, J.; Wu, Z.; Xu, Z.; Li, C. Z.; Li, H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chin. Chem. Lett. 2022, 33, 1650–1658.

    Article  CAS  Google Scholar 

  28. Xiong, R.; Xu, R. X.; Huang, C.; De Smedt, S.; Braeckmans, K. Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev. 2021, 50, 5746–5776.

    Article  CAS  PubMed  Google Scholar 

  29. Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc. 2020, 142, 4944–4954.

    Article  CAS  PubMed  Google Scholar 

  30. Gao, Y.; Wang, J.; Chai, M.; Li, X.; Deng, Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686–5699.

    Article  CAS  PubMed  Google Scholar 

  31. Deng, Y.; Wang, Y.; Jia, F.; Liu, W.; Zhou, D.; Jin, Q.; Ji, J. Tailoring supramolecular prodrug nanoassemblies for reactive nitrogen species-potentiated chemotherapy of liver cancer. ACS Nano 2021, 15, 8663–8675.

    Article  CAS  PubMed  Google Scholar 

  32. Tao, W.; He, Z. ROS-responsive drug delivery systems for biomedical applications. Asian J. Pharm. Sci. 2018, 13, 101–112.

    Article  PubMed  Google Scholar 

  33. Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 2016, 16, 635–646.

    Article  CAS  PubMed  Google Scholar 

  34. Broaders, K. E.; Grandhe, S.; Frechet, J. M. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 2011, 133, 756–758.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, D.; Cornel, E. J.; Du, J. Renoprotective angiographic polymersomes. Adv. Funct. Mater. 2020, 31, 2007330.

    Article  CAS  Google Scholar 

  36. Tian, Z. Y.; Zhang, Z.; Wang, S.; Lu, H. A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat. Commun. 2021, 12, 5810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu, Y.; Shil, P. K.; Zhu, P.; Yang, H.; Verma, A.; Lei, B.; Li, Q. Angiotensin-converting enzyme 2 (ACE2) activator diminazene aceturate ameliorates endotoxin-induced uveitis in mice. Invest. Ophthalmol. Vis. Sci. 2014, 55, 3809–3818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Z.; Min, Z.; Yu, B. Reactive oxygen species and immune regulation. Int. Rev. Immunol. 2020, 39, 292–298.

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein, J. E.; Pepple, K. L. Cytokines in uveitis. Curr. Opin. Ophthalmol. 2018, 29, 267–274.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan, H.; Xu, Y.; Luo, Y.; Wang, N. X.; Xiao, J. H. Role of Nrf2 in cell senescence regulation. Mol. Cell. Biochem. 2021, 476, 247–259.

    Article  CAS  PubMed  Google Scholar 

  41. Bao, M.; Liang, M.; Sun, X.; Mohyuddin, S. G.; Chen, S.; Wen, J.; Yong, Y.; Ma, X.; Yu, Z.; Ju, X.; Liu, X. Baicalin alleviates LPS-induced oxidative stress via NF-kappaB and Nrf2-HO1 signaling pathways in IPEC-J2 cells. Front. Vet. Sci. 2021, 8, 808233.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key Research and Development Project (No. 2020YFE0204400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Jian Ji.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YT., Sheng, ST., Yu, B. et al. An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment. Chin J Polym Sci 40, 1101–1109 (2022). https://doi.org/10.1007/s10118-022-2798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2798-x

Keywords

Navigation