Skip to main content
Log in

Advances in Green-Solvent-Processable All-Polymer Solar Cells

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

All-polymer solar cells (all-PSCs) have significantly improved long-term stability and mechanical stretchability. The power conversion efficiency (PCE) of all-PSCs has been rapidly improved from ∼1% to now over ∼17%, driven by rational molecular design, blend morphology optimization, and device engineering. However, most all-PSCs are generally processed with halogenated solvents, hazardous for human health and the global environment. Achieving high-performance all-PSCs with halogen-free solvent processing remains a challenge. This feature article presents recent advances in green-solvent-processable all-PSCs from the material design and morphological control perspective, and further reviews progress in using more environmentally friendly solvents (i.e., water or alcohol) to achieve genuinely sustainable and environmentally friendly manufacturing all-PSCs. Finally, we provide an outlook on the challenges and opportunities for large-scale manufacturing of green-solvent-processable all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, H.; Wang, Z.; Sun, Y. Advances in non-fullerene acceptor based ternary organic solar cells. Sol. RRL 2018, 2, 1700158.

    Article  CAS  Google Scholar 

  2. Wang, G.; Eastham, N. D.; Aldrich, T. J.; Ma, B.; Manley, E. F.; Chen, Z.; Chen, L. X.; de la Cruz, M. O.; Chang, R. P. H.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Photoactive blend morphology engineering through systematically tuning aggregation in allpolymer solar cells. Adv. Energy Mater. 2018, 8, 1702173.

    Article  CAS  Google Scholar 

  3. Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J. Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew. Chem. Int. Ed. 2018, 57, 13277–13282.

    Article  CAS  Google Scholar 

  4. Li, B. B.; Zhang, X. Y.; Wu, Z.; Yang, J.; Liu, B.; Liao, Q. G.; Wang, J. W.; Feng, K.; Chen, R.; Woo, H. Y.; Ye, F.; Niu, L.; Guo, X. G.; Sun, H. L. Over 16% efficiency all-polymer solar cells by sequential deposition. Sci. China Chem. 2022, 65, 1157–1163.

    Article  CAS  Google Scholar 

  5. Fan, Q. P.; Su, W. Y.; Chen, S. S.; Kim, W.; Chen, X. B.; Lee, B.; Liu, T.; Mendez-Romero, U. A.; Ma, R. J.; Yang, T.; Zhuang, W. L.; Li, Y.; Li, Y. W.; Kim, T. S.; Hou, L. T.; Yang, C.; Yan, H.; Yu, D. H.; Wang, E. G. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule 2020, 4, 658–672.

    Article  CAS  Google Scholar 

  6. An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F. Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 2020, 13, 5039–5047.

    Article  CAS  Google Scholar 

  7. Liu, T.; Yang, T.; Ma, R. J.; Zhan, L. L.; Luo, Z. H.; Zhang, G. Y.; Li, Y.; Gao, K.; Xiao, Y. Q.; Yu, J. W.; Zou, X. H.; Sun, H. L.; Zhang, M. J.; Dela Pena, T. A.; Xing, Z. S.; Liu, H.; Li, X. J.; Li, G.; Huang, J. H.; Duan, C. H.; Wong, K. S.; Lu, X. H.; Guo, X. G.; Gao, F.; Chen, H. Z.; Huang, F.; Li, Y. F.; Li, Y. L.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morpholog. via the design of ternary blend. Joule 2021, 5, 914–930.

    Article  CAS  Google Scholar 

  8. Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Dela Peña, T. A.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K. S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.

    Article  CAS  Google Scholar 

  9. Sun, H.; Liu, B.; Ma, Y.; Lee, J.-W.; Yang, J.; Wang, J.; Li, Y.; Li, B.; Feng, K.; Shi, Y.; Zhang, B.; Han, D.; Meng, H.; Niu, L.; Kim, B. J.; Zheng, Q.; Guo, X. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells. Adv. Mater. 2021, 33, 2102635.

    Article  CAS  Google Scholar 

  10. Ma, R.; Yu, J.; Liu, T.; Zhang, G.; Xiao, Y.; Luo, Z.; Chai, G.; Chen, Y.; Fan, Q.; Su, W.; Li, G.; Wang, E.; Lu, X.; Gao, F.; Tang, B.; Yan, H. Allpolymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate 2021, https://doi.org/10.1002/agt2.58.

  11. Sun, H.; Liu, B.; Yu, J.; Zou, X.; Zhang, G.; Zhang, Y.; Zhang, W.; Su, M.; Fan, Q.; Yang, K.; Chen, J.; Yan, H.; Gao, F.; Guo, X. Reducing energy los. via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci. China Chem. 2020, 63, 1785–1792.

    Article  CAS  Google Scholar 

  12. Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.-G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845–850.

    Article  CAS  Google Scholar 

  13. Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

    Article  CAS  Google Scholar 

  14. Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; Gu, X.; Jen, A. K. Y.; Tang, B. Z.; Cao, Y.; Zhang, Y.; Liu, F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 2021, 12, 332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500.

    Article  CAS  Google Scholar 

  16. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencie. via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  17. Ye, L.; Jiao, X.; Zhou, M.; Zhang, S.; Yao, H.; Zhao, W.; Xia, A.; Ade, H.; Hou, J. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 2015, 27, 6046–6054.

    Article  CAS  PubMed  Google Scholar 

  18. McNeill, C. R. Morphology of all-polymer solar cells. Energy Environ. Sci. 2012, 5, 5653–5667.

    Article  CAS  Google Scholar 

  19. Zhang, S.; Ye, L.; Zhang, H.; Hou, J. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533–543.

    Article  CAS  Google Scholar 

  20. Burgués-Ceballos, I.; Machui, F.; Min, J.; Ameri, T.; Voigt, M. M.; Luponosov, Y. N.; Ponomarenko, S. A.; Lacharmoise, P. D.; Campoy-Quiles, M.; Brabec, C. J. Solubility based identification of green solvents for small molecule organic solar cells. Adv. Funct. Mater. 2014, 24, 1449–1457.

    Article  CAS  Google Scholar 

  21. Tait, J. G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 2015, 25, 3393–3398.

    Article  CAS  Google Scholar 

  22. Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook. 2nd ed.; CRC Press: Boca Raton, 2007.

    Book  Google Scholar 

  23. Larsen, C.; Lundberg, P.; Tang, S.; Ràfols-Ribé, J.; Sandström, A.; Mattias Lindh, E.; Wang, J.; Edman, L. A tool for identifying green solvents for printed electronics. Nat. Commun. 2021, 12, 4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-Camargo, A. D. P.; Bueno, M.; Parada-Alfonso, F.; Cifuentes, A.; Ibáñez, E. Hansen solubility parameters for selection of green extraction solvents. TrAC, Trends Anal. Chem. 2019, 118, 227–237.

    Article  CAS  Google Scholar 

  25. Jalan, I.; Lundin, L.; Jan, V. S. Using solubility parameters to model more environmentally friendly solvent blends for organic solar cell active layers. Materials 2019, 12, 3889.

    Article  CAS  PubMed Central  Google Scholar 

  26. Abbott, S.; Hansen, C. M. Hansen solubility parameters in practice. Hansen-Solubility: 2008.

  27. Holmes, N. P.; Munday, H.; Barr, M. G.; Thomsen, L.; Marcus, M. A.; Kilcoyne, A. L. D.; Fahy, A.; van Stam, J.; Dastoor, P. C.; Moons, E. Unravelling donor-acceptor film morphology formation for environmentally-friendly OPV ink formulations. Green Chem. 2019, 21, 5090–5103.

    Article  CAS  Google Scholar 

  28. Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z.; Gu, X.; Ying, L.; Zhang, Y.; Liu, F. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv. Mater. 2019, 31, 1902899.

    Article  CAS  Google Scholar 

  29. Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Guntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408–412.

    Article  CAS  PubMed  Google Scholar 

  30. Stapleton, A.; Vaughan, B.; Xue, B. F.; Sesa, E.; Burke, K.; Zhou, X. J.; Bryant, G.; Werzer, O.; Nelson, A.; Kilcoyne, A. L. D.; Thomsen, L.; Wanless, E.; Belcher, W.; Dastoor, P. A multilayered approach to polyfluorene water-based organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 102, 114–124.

    Article  CAS  Google Scholar 

  31. Xie, C.; Heumüller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R. H.; Unruh, T.; McCulloch, I.; Li, N.; Brabec, C. J. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan, C.; Zhang, K.; Zhong, C.; Huang, F.; Cao, Y. Recent advances in water/alcohol-solubl. π-conjugated materials: new materials and growing applications in solar cells. Chem. Soc. Rev. 2013, 42, 9071–9104.

    Article  CAS  PubMed  Google Scholar 

  33. Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847.

    Article  CAS  Google Scholar 

  34. Jiang, H. Y.; Qin, G. M.; Zhang, L. J.; Pan, F. L.; Wu, Z. H.; Wang, Q.; Wen, G. Z.; Zhang, W.; Cao, Y.; Chen, J. W. Dithienobenzoxadiazole-based wide bandgap donor polymers with strong aggregation properties for the preparation of efficient as-cast non-fullerene polymer solar cells processed using a non-halogenated solvent. J. Mater. Chem. C 2021, 9, 249–259.

    Article  CAS  Google Scholar 

  35. Li, G. P.; Feng, L. W.; Mukherjee, S.; Jones, L. O.; Jacobberger, R. M.; Huang, W.; Young, R. M.; Pankow, R. M.; Zhu, W. G.; Lu, N.; Kohlstedt, K. L.; Sangwan, V. K.; Wasielewski, M. R.; Hersam, M. C.; Schatz, G. C.; DeLongchamp, D. M.; Facchetti, A.; Marks, T. J. Non-fullerene acceptors with direct and indirect hexa-fluorination afford > 17% efficiency in polymer solar cells. Energy Environ. Sci. 2022, 15, 645–659.

    Article  CAS  Google Scholar 

  36. Yu, H.; Pan, M. A.; Sun, R.; Agunawela, I.; Zhang, J. Q.; Li, Y. H.; Qi, Z. Y.; Han, H.; Zou, X. H.; Zhou, W. T.; Chen, S. S.; Lai, J. Y. L.; Luo, S. W.; Luo, Z. H.; Zhao, D. H.; Lu, X. H.; Ade, H.; Huang, F.; Min, J.; Yan, H. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2 % efficiency. Angew. Chem. Int. Ed. 2021, 60, 10137–10146.

    Article  CAS  Google Scholar 

  37. Yu, H.; Qi, Z.; Yu, J.; Xiao, Y.; Sun, R.; Luo, Z.; Cheung, A. M. H.; Zhang, J.; Sun, H.; Zhou, W.; Chen, S.; Guo, X.; Lu, X.; Gao, F.; Min, J.; Yan, H. Fluorinated end group enables high-performance allpolymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv. Energy Mater. 2021, 11, 2003171.

    Article  CAS  Google Scholar 

  38. Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M. H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 2021, 31, 2100791.

    Article  CAS  Google Scholar 

  39. He, J.; Zhang, W. J.; Ye, J. C.; Gao, P. Q. 16% efficient silicon/organic heterojunction solar cells using narrow band-gap conjugated polyelectrolytes based low resistance electron-selective contacts. Nano Energy 2018, 43, 117–123.

    Article  CAS  Google Scholar 

  40. Tan, Y.; Chen, L.; Wu, F. Y.; Huang, B.; Liao, Z. H.; Yu, Z. K. N.; Hu, L.; Zhou, Y. H.; Chen, Y. W. Regulation of the polar groups in n-type conjugated polyelectrolytes as electron transfer layer for inverted polymer solar cells. Macromolecules 2018, 51, 8197–8204.

    Article  CAS  Google Scholar 

  41. Zhang, L. Z.; Zhou, X. Y.; Zhong, X. W.; Cheng, C.; Tian, Y. Q.; Xu, B. M. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy 2019, 57, 248–255.

    Article  CAS  Google Scholar 

  42. Ye, L.; Zhang, S. Q.; Zhao, W. C.; Yao, H. F.; Hou, J. H. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem. Mater. 2014, 26, 3603–3605.

    Article  CAS  Google Scholar 

  43. Chen, Y.; Zhang, S. Q.; Wu, Y.; Hou, J. H. Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents. Adv. Mater. 2014, 26, 2744–2749.

    Article  CAS  PubMed  Google Scholar 

  44. Meng, B.; Song, H. Y.; Chen, X. X.; Xie, Z. Y.; Liu, J.; Wang, L. X. Replacing alkyl with oligo(ethylene glycol) as side chains of conjugated polymers for clos. π-π stacking. Macromolecules 2015, 48, 4357–4363.

    Article  CAS  Google Scholar 

  45. Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H. Y.; Kim, B. J. Eco-friendly polymer solar cells: advances in green-solvent processing and material design. ACS Nano 2020, 14, 14493–14527.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, C.; Chen, S.; Park, J. S.; Kim, G. U.; Kang, H.; Lee, S.; Phan, T. N. L.; Kwon, S. K.; Kim, Y. H.; Kim, B. J. Green solvent-processed, highperformance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors. J. Mater. Chem. A 2021, 9, 24622–24630.

    Article  CAS  Google Scholar 

  47. Li, S.; Zhang, H.; Yue, S.; Yu, X.; Zhou, H. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanot 2021, 33, 072002.

    Article  CAS  Google Scholar 

  48. Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew. Chem. Int. Ed. 2009, 48, 4300–4316.

    Article  CAS  Google Scholar 

  49. Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy Environ. Sci. 2017, 10, 1243–1251.

    Article  CAS  Google Scholar 

  50. Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.

    Article  CAS  Google Scholar 

  51. Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027.

    Article  CAS  Google Scholar 

  52. Qin, Y. P.; Ye, L.; Zhang, S. Q.; Zhu, J.; Yang, B.; Ade, H.; Hou, J. H. A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. J. Mater. Chem. A 2018, 6, 4324–4330.

    Article  CAS  Google Scholar 

  53. Li, S.; Zhang, H.; Zhao, W.; Ye, L.; Yao, H.; Yang, B.; Zhang, S.; Hou, J. Green-solvent-processed all-polymer solar cells containing a perylene diimide-based acceptor with an efficiency over 6.5%. Adv. Energy Mater. 2016, 6, 1501991.

    Article  CAS  Google Scholar 

  54. Zhou, Y.; Gu, K. L.; Gu, X. D.; Kurosawa, T.; Yan, H. P.; Guo, Y. K.; Koleilat, G. I.; Zhao, D. H.; Toney, M. F.; Bao, Z. N. All-polymer solar cells employing non-halogenated solvent and additive. Chem. Mater. 2016, 28, 5037–5042.

    Article  CAS  Google Scholar 

  55. Zhou, L.; He, X.; Lau, T. K.; Qiu, B.; Wang, T.; Lu, X.; Luszczynska, B.; Ulanski, J.; Xu, S.; Chen, G.; Yuan, J.; Zhang, Z. G.; Li, Y.; Zou, Y. Nonhalogenated solvent-processed all-polymer solar cells over 7.4% efficiency from quinoxaline-based polymers. ACS Appl. Mater. Interfaces 2018, 10, 41318–41325.

    Article  CAS  PubMed  Google Scholar 

  56. Li, J. H.; Li, Y. L.; Xu, J. T.; Luscombe, C. K. Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells. ACS Appl. Mater. Interfaces 2017, 9, 17942–17948.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, H. I.; Lee, J.; Choi, M.-J.; Ryu, S. U.; Choi, K.; Lee, S.; Hoogland, S.; de Arquer, F. P. G.; Sargent, E. H.; Park, T. Efficient and stable colloidal quantum dot solar cells with a green-solvent holetransport layer. Adv. Energy Mater. 2020, 10, 2002084.

    Article  CAS  Google Scholar 

  58. Liao, Q.; Kang, Q.; Yang, Y.; Zheng, Z.; Qin, J.; Xu, B.; Hou, J. Highly stable organic solar cells based on an ultraviolet-resistant cathode interfacial layer. CCS Chem. 2022, 4, 1059–1069.

    Article  CAS  Google Scholar 

  59. Kang, Q.; Liao, Q.; Yang, C.; Yang, Y.; Xu, B.; Hou, J. A new PEDOT derivative for efficient organic solar cell with a fill factor of 0.80. Adv. Energy Mater. 2022, 12, 2103892.

    Article  CAS  Google Scholar 

  60. Ye, L.; Xiong, Y.; Li, S.; Ghasemi, M.; Balar, N.; Turner, J.; Gadisa, A.; Hou, J.; O’Connor, B. T.; Ade, H. Precise manipulation of multilength scale morphology and its influence on eco-friendly printed all-polymer solar cells. Adv. Funct. Mater. 2017, 27, 1702016.

    Article  CAS  Google Scholar 

  61. Jeong, M.; Lee, B.; Cho, Y.; Oh, J.; Lee, S. M.; Lee, J.; Yang, C. Toxic solvent- and additive-free efficient all-polymer solar cell. via a simple random sequence strategy in both donor and acceptor copolymer backbones. Small Methods 2020, 4, 1900696.

    Article  CAS  Google Scholar 

  62. Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology. Sol. RRL 2018, 2, 1800196.

    Article  CAS  Google Scholar 

  63. Feng, W.; Lin, Z.; Lin, C.; Wang, W.; Ling, Q. Bicomponent random approach for the synthesis of donor polymers for efficient allpolymer solar cells processed from a green solvent. ACS Appl. Mater. Interfaces 2019, 11, 43441–43451.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, C.; Li, Z.; Zhong, W.; Peng, F.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8%. ChCom 2021, 57, 935–938.

    CAS  Google Scholar 

  65. Zhang, J.; Jia, T.; Tan, C.-H.; Zhang, K.; Ren, M.; Dong, S.; Xu, Q.; Huang, F.; Cao, Y. Nonhalogenated-solvent-processed highperformance all-polymer solar cell with efficiency over 14%. Sol. RRL 2021, 5, 2100076.

    Article  CAS  Google Scholar 

  66. Liu, B.; Sun, H. L.; Lee, J. W.; Yang, J.; Wang, J. W.; Li, Y. C.; Li, B. B.; Xu, M.; Liao, Q. G.; Zhang, W.; Han, D. X.; Niu, L.; Meng, H.; Kim, B. J.; Guo, X. G. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 2021, 14, 4499–4507.

    Article  CAS  Google Scholar 

  67. Liu, H.; Wang, L.; Liu, H.; Guan, M.; Su, C. J.; Jeng, U. S.; Zhao, B.; Weng, C.; You, K.; Lu, X. Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive. Chem. Eng. J. 2022, 429, 132407.

    Article  CAS  Google Scholar 

  68. Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157–163.

    Article  CAS  Google Scholar 

  69. Li, Z.-Y.; Zhong, W.-K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Achieving efficient thick film all-polymer solar cells using a green solvent additive. Chinese J. Polym. Sci. 2020, 38, 323–331.

    Article  CAS  Google Scholar 

  70. Li, Z.; Zhong, W.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019, 103931.

  71. Zhang, Q.; Chen, Z. Y.; Ma, W.; Xie, Z. Y.; Han, Y. C. Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. J. Mater. Chem. C 2019, 7, 12560–12571.

    Article  CAS  Google Scholar 

  72. Zhang, Q.; Chen, Z.; Ma, W.; Xie, Z.; Liu, J.; Yu, X.; Han, Y. Efficient nonhalogenated solvent-processed ternary all-polymer solar cells with a favorable morphology enabled by two well-compatible donors. ACS Appl. Mater. Interfaces 2019, 11, 32200–32208.

    Article  CAS  PubMed  Google Scholar 

  73. Gokulnath, T.; Choi, J.; Jin, H.; Park, H.-Y.; Sung, K.; Do, Y.; Park, H.; Reddy, S. S.; Kim, J.; Song, M.; Yoon, J.; Jin, S. H. All-polymer solar cells approaching 12% efficiency with a ne. π-conjugated polymer donor enabled by a nonhalogenated solvent process. ACS Appl. Mater. Interfaces 2021, 13, 28231–28241.

    Article  CAS  PubMed  Google Scholar 

  74. Lee, S.; Kim, Y.; Wu, Z.; Lee, C.; Oh, S. J.; Nguyen Thanh, L.; Lee, J.; Jeong, D.; Zhang, K.; Huang, F.; Kim, T. S.; Woo, H. Y.; Kim, B. J. Aqueous-soluble naphthalene diimide-based polymer acceptors for efficient and air-stable all-polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 45038–45047.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y.; Wang, N.; Wang, Y.; Zhang, J.; Liu, J.; Wang, L. Allpolymer indoor photovoltaic modules. iScience 2021, 24, 103104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuan, J. Y.; Xu, Y. L.; Shi, G. Z.; Ling, X. F.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. L. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J. Mater. Chem. A 2018, 6, 10421–10432.

    Article  CAS  Google Scholar 

  77. Zheng, Y. F.; Goh, T.; Fan, P.; Shi, W.; Yu, J. S.; Taylor, A. D. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724–15731.

    Article  CAS  PubMed  Google Scholar 

  78. Fuchs, R.; Chambers, E. J.; Stephenson, W. K. Enthalpies of interaction of nonpolar solutes with nonpolar solvents. The role of solute polarizability and molar volume in solvation. CaJCh 1987, 65, 2624–2627.

    CAS  Google Scholar 

  79. Walker, B.; Tamayo, A.; Duong, D. T.; Dang, X. D.; Kim, C.; Granstrom, J.; Nguyen, T. Q. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system. Adv. Energy Mater. 2011, 1, 221–229.

    Article  CAS  Google Scholar 

  80. Lee, J.; Park, S. A.; Ryu, S. U.; Chung, D.; Park, T.; Son, S. Y. Green-solvent-processable organic semiconductors and future directions for advanced organic electronics. J. Mater. Chem. A 2020, 8, 21455–21473.

    Article  CAS  Google Scholar 

  81. Lan, L.; Chen, Z.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell, T. P.; Huang, F.; Cao, Y. High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv. Sci. 2016, 3, 1600032.

    Article  CAS  Google Scholar 

  82. Park, C. D.; Fleetham, T. A.; Li, J.; Vogt, B. D. High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing. Org. Electron. 2011, 12, 1465–1470.

    Article  CAS  Google Scholar 

  83. Burgues-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martinez-Ferrero, E. Towards industrialization of polymer solar cells: material processing for upscaling. J. Mater. Chem. A 2014, 2, 17711–17722.

    Article  CAS  Google Scholar 

  84. Ye, L.; Xiong, Y.; Yao, H.; Gadisa, A.; Zhang, H.; Li, S.; Ghasemi, M.; Balar, N.; Hunt, A.; O’Connor, B. T.; Hou, J.; Ade, H. High performance organic solar cells processed by blade coating in air from a benign food additive solution. Chem. Mater. 2016, 28, 7451–7458.

    Article  CAS  Google Scholar 

  85. Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H. Y.; Ge, Z.; Hou, J. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 2019, 31, 1903441.

    Article  CAS  Google Scholar 

  86. Chen, X.; Huang, R.; Han, Y.; Zha, W.; Fang, J.; Lin, J.; Luo, Q.; Chen, Z.; Ma, C. Q. Balancing the molecular aggregation and vertical phase separation in the polymer: nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet-printed active layer. Adv. Energy Mater. 2022, 12, 2200044.

    Article  CAS  Google Scholar 

  87. Tintori, F.; Laventure, A.; Welch, G. C. Perylene diimide based organic photovoltaics with slot-die coated active layers from halogen-free solvents in air at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 39010–39017.

    Article  CAS  PubMed  Google Scholar 

  88. Dayneko, S. V.; Pahlevani, M.; Welch, G. C. Indoor photovoltaics: photoactive material selection, greener ink formulations, and slot-die coated active layers. ACS Appl. Mater. Interfaces 2019, 11, 46017–46025.

    Article  CAS  PubMed  Google Scholar 

  89. Layenture, A.; Harding, C. R.; Cieplechowicz, E.; Li, Z.; Wang, J.; Zou, Y. P.; Welch, G. C. Screening quinoxaline-type donor polymers for roll-to-roll processing compatible organic photovoltaics. ACS Appl. Polym. Mater. 2019, 1, 2168–2176.

    Article  CAS  Google Scholar 

  90. Xiong, Y.; Ye, L.; Zhang, C. Eco-friendly solution processing of allpolymer solar cells: recent advances and future perspective. J. Polym. Sci. 2022, 60, 945–960.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173172, 52173171 and 21801124), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (No. 2021B1515020027), GuangDong Basic and Applied Basic Research Foundation (No. 2021A1515110892), China Postdoctoral Science Foundation (No. 2021M700062), the Shenzhen Science and Technology Innovation Commission (Nos. JCYJ202103243104813035 and JCYJ20180504165709042) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology). X.G. is thankful for the financial support from the Songshan Lake Materials Laboratory (No. 2021SLABFK03). Our work was also supported by the Center for Computational Science and Engineering of SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiliang Sun.

Additional information

Biography

Huiliang Sun received his Ph.D. degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, State Key Laboratory of Polymer Chemistry and Physics in 2017. He successively did postdoctoral research at South China University of Technology-Southern University of Science and Technology (SUSTech), Hong Kong University of Science and Technology from July 2017 to July 2020. He was appointed as an Associate Professor in the Department of Materials Science and Engineering, SUSTech in July 2019. He joined Guangzhou University as the Hundred-Talent Program (A) in November 2021 and was also a Visiting Professor in the Department of Materials, SUSTech. He leads an organic semiconductor group working on novel organic and organic-inorganic hybrid semiconductor materials and devices, key technology research on optical conversion materials, related mechanisms and devices, green organic synthetic chemistry, and photocatalysis.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Q., Sun, H., Guo, X. et al. Advances in Green-Solvent-Processable All-Polymer Solar Cells. Chin J Polym Sci 40, 846–860 (2022). https://doi.org/10.1007/s10118-022-2772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2772-7

Keywords

Navigation