Skip to main content
Log in

Size and Dynamics of Ring Polymers under Different Topological Constraints

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The impact of ring polymer length N and the influence of interchain and intrachain interactions on the size and dynamic behaviors of ring polymers, including the structural relaxation time τ R and self-diffusion coefficient D, remain poorly understood at present due to a lack of systematic studies with relatively large N values. This work addressed this issue by applying dynamic Monte Carlo simulations with independently tuned interchain and intrachain interactions to investigate the size and dynamics of the ring melts with chain lengths over a wide range of 0.2N eN≤80N e (N e is the entanglement length of corresponding linear chains) under different topological constraints, including all-crossing and intercrossing systems. We found that it was inappropriate to treat the unknotting constraint free energy of the ring chains in the melts as the free energy contributed by the excluded volume interactions of polymers in a good solvent. Scaling exponents of 2.5 and 1.5 reflecting the N-dependence of τ R were obtained for long ring chains in non-crossing and intra-crossing systems, respectively, suggesting that the ring chains behaved as individual clusters and exhibited Zimm-like dynamics in intra-crossing systems. A single scaling exponent of −2 reflecting the N-dependence of D was obtained for ring chains in non-crossing and intra-crossing systems, indicating that the intrachain constraints affected only the value of D, and had little influence on the scaling relationship between D and N. Furthermore, the extended Stokes-Einstein relation broke down for the ring chains in the non-crossing and intra-crossing systems because the structural relaxation and translational diffusion were decoupled for the short ring systems, while both the translational diffusion and rotational relaxations, as well as diffusion at short and long time scales, were decoupled for long ring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tu, X. Y.; Liu, M. Z.; Wei, H. Recent progress on cyclic polymers: synthesis, bioproperties, and biomedical applications. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1447–1458.

    Article  CAS  Google Scholar 

  2. Cates, M. E.; Deutsch, J. M. Conjectures on the statistics of ring polymers. J. Phys. (Paris) 1986, 47, 2121–2128.

    Article  CAS  Google Scholar 

  3. Suzuki, J.; Takano, A.; Deguchi, T.; Matsushita, Y. Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory. J. Chem. Phys. 2009, 131, 144902.

    Article  PubMed  Google Scholar 

  4. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 2011, 134, 204904.

    Article  PubMed  Google Scholar 

  5. Vettorel, T.; Grosberg, A. Y.; Kremer, K. Statistics of polymer rings in the melt: a numerical simulation study. Phys. Biol. 2009, 6, 025013.

    Article  PubMed  Google Scholar 

  6. Brás, A. R.; Pasquino, R.; Koukoulas, T.; Tsolou, G.; Holderer, O.; Radulescu, A.; Allgaier, J.; Mavrantzas, V. G.; Pyckhout-Hintzen, W.; Wischnewski, A.; Vlassopoulos, D.; Richter, D. Structure and dynamics of polymer rings by neutron scattering: breakdown of the Rouse model. Soft Matter 2011, 7, 11169–11176.

    Article  Google Scholar 

  7. Sakaue, T. Ring polymers in melts and solutions: scaling and crossover. Phys. Rev. Lett. 2011, 106, 167802.

    Article  PubMed  Google Scholar 

  8. Sakaue, T. Statistics and geometrical picture of ring polymer melts and solutions. Phys. Rev. E 2012, 85, 021806.

    Article  Google Scholar 

  9. Vettorel, T.; Reigh, S. Y.; Yoon, D. Y.; Kremer, K. Monte-Carlo method for simulations of ring polymers in the melt. Macromol. Rapid Commun. 2009, 30, 345–351.

    Article  CAS  PubMed  Google Scholar 

  10. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 2011, 134, 204905.

    Article  PubMed  Google Scholar 

  11. Lee, E.; Kim, S.; Jung, Y. Slowing down of ring polymer diffusion caused by inter-ring threading. Macromol. Rapid Commun. 2015, 36, 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, H. C.; Lee, H.; Lee, W.; Chang, T.; Roovers, J. Fractionation of cyclic polystyrene from linear precursor by HPLC at the chromatographic critical condition. Macromolecules 2000, 33, 8119–8121.

    Article  CAS  Google Scholar 

  13. Meaburn, K. J.; Misteli, T. Chromosome territories. Nature 2007, 445, 379–381.

    Article  CAS  PubMed  Google Scholar 

  14. Richter, D.; Gooßen, S.; Wischnewski, A. Celebrating Soft Matter’s 10th anniversary: Topology matters: structure and dynamics of ring polymers. Soft Matter 2015, 11, 8535–8549.

    Article  CAS  PubMed  Google Scholar 

  15. Iwamoto, T.; Doi, Y.; Kinoshita, K.; Ohta, Y.; Takano, A.; Takahashi, Y.; Nagao, M.; Matsushita, Y. Conformations of ring polystyrenes in bulk studied by SANS. Macromolecules 2018, 51, 1539–1548.

    Article  CAS  Google Scholar 

  16. Arrighi, V.; Gagliardi, S.; Dagger, A. C.; Semlyen, J. A.; Higgins, J. S.; Shenton, M. J. Conformation of cyclics and linear chain polymers in bulk by SANS. Macromolecules 2004, 37, 8057–8065.

    Article  CAS  Google Scholar 

  17. Brás, A. R.; Gooßen, S.; Krutyeva, M.; Radulescu, A.; Farago, B.; Allgaier, J.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. Compact structure and non-Gaussian dynamics of ring polymer melts. Soft Matter 2014, 10, 3649–3655.

    Article  PubMed  Google Scholar 

  18. Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. Molecular scale dynamics of large ring polymers. Phys. Rev. Lett. 2014, 113, 168302.

    Article  PubMed  Google Scholar 

  19. Lang, M.; Fischer, J.; Sommer, J. U. Effect of topology on the conformations of ring polymers. Macromolecules 2012, 45, 7642–7648.

    Article  CAS  Google Scholar 

  20. Grosberg, A. Y. Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 2014, 10, 560–565.

    Article  CAS  PubMed  Google Scholar 

  21. Obukhov, S.; Johner, A.; Baschnagel, J.; Meyer, H.; Wittmer, J. P. Melt of polymer rings: the decorated loop model. Europhys. Lett. 2014, 105, 48005.

    Article  Google Scholar 

  22. Ge, T.; Panyukov, S.; Rubinstein, M. Self-similar conformations and dynamics in entangled melts and solutions of nonconcatenated ring polymers. Macromolecules 2016, 49, 708–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pakula, T.; Geyler, S. Cooperative relaxations in condensed macromolecular systems. 3. Computer-simulated melts of cyclic polymers. Macromolecules 1988, 21, 1665–1670.

    Article  CAS  Google Scholar 

  24. Müller, M.; Wittmer, J. P.; Cates, M. E. Topological effects in ring polymers: a computer simulation study. Phys. Rev. E 1996, 53, 5063–5074.

    Article  Google Scholar 

  25. Brown, S.; Szamel, G. Structure and dynamics of ring polymers. J. Chem. Phys. 1998, 108, 4705–4708.

    Article  CAS  Google Scholar 

  26. Hur, K.; Winkler, R. G.; Yoon, D. Y. Comparison of ring and linear polyethylene from molecular dynamics simulations. Macromolecules 2006, 39, 3975–3977.

    Article  CAS  Google Scholar 

  27. Tsolou, G.; Stratikis, N.; Baig, C.; Stephanou, P. S.; Mavrantzas, V. G. Melt structure and dynamics of unentangled polyethylene rings: Rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues. Macromolecules 2010, 43, 10692–10713.

    Article  CAS  Google Scholar 

  28. Tsalikis, D. G.; Koukoulas, T.; Mavrantzas, V. G.; Pasquino, R.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Richter, D. Microscopic structure, conformation, and dynamics of ring and linear poly(ethylene oxide) melts from detailed atomistic molecular dynamics simulations: dependence on chain length and direct comparison with experimental data. Macromolecules 2017, 50, 2565–2584.

    Article  CAS  Google Scholar 

  29. Suzuki, J.; Takano, A.; Matsushita, Y. Topological effect in ring polymers investigated with Monte Carlo simulation. J. Chem. Phys. 2008, 129, 034903.

    Article  PubMed  Google Scholar 

  30. Lee, E.; Jung, Y. Slow dynamics of ring polymer melts by asymmetric interaction of threading configuration: Monte Carlo study of a dynamically constrained lattice model. Polymers 2019, 11, 516.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lo, W. C.; Turner, M. S. The topological glass in ring polymers. Europhys. Lett. 2013, 102, 58005.

    Article  Google Scholar 

  32. Michieletto, D.; Turner, M. S. A topologically driven glass in ring polymers. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 5195–5200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moore, N. T.; Grosberg, A. Y. Limits of analogy between self-avoidance and topology-driven swelling of polymer loops. Phys. Rev. E 2005, 72, 061803.

    Article  CAS  Google Scholar 

  34. Rubinstein, M. Dynamics of ring polymers in the presence of fixed obstacles. Phys. Rev. Lett. 1986, 57, 3023–3026.

    Article  CAS  PubMed  Google Scholar 

  35. Nechaev, S. K.; Semenov, A. N.; Koleva, M. K. Dynamics of a polymer chain in an array of obstacles. Physica A 1987, 140, 506–520.

    Article  Google Scholar 

  36. Obukhov, S. P.; Rubinstein, M.; Duke, T. Dynamics of a ring polymer in a gel. Phys. Rev. Lett. 1994, 73, 1263–1266.

    Article  CAS  PubMed  Google Scholar 

  37. Rubinstein, M.; Colby, R. H. Polymer physics. Oxford University Press: Oxford, 2003.

    Google Scholar 

  38. Tsalikis, D. G.; Alatas, P. V.; Peristeras, L. D.; Mavrantzas, V. G. Scaling laws for the conformation and viscosity of ring polymers in the crossover region around Me from detailed molecular dynamics simulations. ACS Macro Lett. 2018, 7, 916–920.

    Article  CAS  PubMed  Google Scholar 

  39. Jan, S.; Alexander, Y. G. Understanding the dynamics of rings in the melt in terms of the annealed tree model. J. Phys.: Condens. Matter 2015, 27, 064117.

    Google Scholar 

  40. Mo, J.; Wang, J.; Wang, Z.; Lu, Y.; An, L. Size and dynamics of a tracer ring polymer embedded in a linear polymer chain melt matrix. Macromolecules 2022, 55, 1505–1514.

    Article  CAS  Google Scholar 

  41. Shaffer, J. S. Effects of chain topology on polymer dynamics: bulk melts. J. Chem. Phys. 1994, 101, 4205–4213.

    Article  CAS  Google Scholar 

  42. Shaffer, J. S. Effects of chain topology on polymer dynamics: configurational relaxation in polymer melts. J. Chem. Phys. 1995, 103, 761–772.

    Article  CAS  Google Scholar 

  43. Paul, W.; Binder, K.; Heermann, D. W.; Kremer, K. Dynamics of polymer solutions and melts reptation predictions and scaling of relaxation times. J. Chem. Phys. 1991, 95, 7726–7740.

    Article  CAS  Google Scholar 

  44. Shanbhag, S.; Larson, R. G. Chain retraction potential in a fixed entanglement network. Phys. Rev. Lett. 2005, 94, 076001.

    Article  PubMed  Google Scholar 

  45. Brown, S.; Lenczycki, T.; Szamel, G. Influence of topological constraints on the statics and dynamics of ring polymers. Phys. Rev. E 2001, 63, 052801.

    Article  CAS  Google Scholar 

  46. Shanbhag, S.; Larson, R. G. Identification of topological constraints in entangled polymer melts using the bond-fluctuation model. Macromolecules 2006, 39, 2413–2417.

    Article  CAS  Google Scholar 

  47. Yang, Y.; Sun, Z.; Fu, C.; An, L.; Wang, Z.-G. Monte Carlo simulation of a single ring among linear chains: structural and dynamic heterogeneity. J. Chem. Phys. 2010, 133, 064901.

    Article  PubMed  Google Scholar 

  48. Lang, M. Ring conformations in bidisperse blends of ring polymers. Macromolecules 2013, 46, 1158–1166.

    Article  CAS  Google Scholar 

  49. Li, B.; Sun, Z.; An, L.; Wang, Z.-G. Influence of topology on the free energy and metric properties of an ideal ring polymer confined in a slit. Macromolecules 2015, 48, 8675–8680.

    Article  CAS  Google Scholar 

  50. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272–1280.

    Article  CAS  Google Scholar 

  51. Zimm, B. H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 1956, 24, 269–278.

    Article  CAS  Google Scholar 

  52. Mei, B.; Dell, Z. E.; Schweizer, K. S. Microscopic theory of longtime center-of-mass self-diffusion and anomalous transport in ring polymer liquids. Macromolecules 2020, 53, 10431–10445.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2020YFA0713601), the National Natural Science Foundation of China (Nos. 21790340 and 22073092), and the Programs of Chinese Academy of Sciences (No. QYZDY-SSW-SLH027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Yuan Lu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, JY., Wang, ZH., Lu, YY. et al. Size and Dynamics of Ring Polymers under Different Topological Constraints. Chin J Polym Sci 41, 516–524 (2023). https://doi.org/10.1007/s10118-022-2743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2743-z

Keywords

Navigation