Skip to main content
Log in

Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymeric membranes with the integration of various functional performances toward wastewater treatment are urgently required. However, most of the polymeric membranes only exhibit a single function of highly efficiently removing one kind of pollutants. In this work, a biomimetic modification method was introduced to tailor the chemical and topological structure of the porous poly(vinylidene fluoride) (PVDF) fibers prepared by electrospinning. The polydopamine (PDA) nanoparticles were homogeneously introduced onto the surface of PVDF porous fibers via precisely tailoring the concentration of dopamine, which endowed the fibers with more polar groups and bigger roughness but did not destroy the crystalline structures. The fibrous membranes exhibited switchable superhydrophilicity and superlipophilicity characteristics, excellent adsorption abilities toward organic dyes, heavy metal ions and oils. The highest adsorption capacities achieved 917.4 mg/g toward methylene blue (MB), 42.6 mg/g toward Cr(VI) and 74.6 g/g toward silicone oil, respectively. Specifically, the membrane could rapidly remove the trace MB when water flowed through the membrane. The membrane also exhibited excellent sterilization performances, and the bacterial eliminating rate achieved 99.9% for the E. coli and S. aureus. The excellent light-to-heat conversion ability endowed the membrane with the self-heating ability, furtherly intensifying the wastewater treatment efficiency. This work confirms that the PDA nanoparticles-decorated PVDF porous fibers might be the new generation adsorbents used in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrie, B.; Barden, R.; Hordern, B. K. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27.

    Article  CAS  PubMed  Google Scholar 

  2. Yap, P. L.; Nine, M. J.; Hassan, K.; Tung, T. T.; Tran, D. N. H.; Losic D. Graphene-based sorbents for multipollutants removal in water: a review of recent progress. Adv. Funct. Mater. 2021, 31, 2007356.

    Article  CAS  Google Scholar 

  3. Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 2016, 306, 1116–1137.

    Article  CAS  Google Scholar 

  4. Gupta, V. K.; Suhas. Application of low-cost adsorbents for dye removal-a review. J. Environ. Manage. 2009, 90, 2313–2342.

    Article  CAS  PubMed  Google Scholar 

  5. Li, J. J.; Zhou, Y. N.; Luo, Z. H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review. Prog. Polym. Sci. 2018, 87, 1–33.

    Article  CAS  Google Scholar 

  6. Smith, S. C.; Rodrigues, D. F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 2015, 91, 122–143.

    Article  CAS  Google Scholar 

  7. Pendergast, M. M.; Hoek, E. M. V. A Review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.

    Article  CAS  Google Scholar 

  8. Zhang, J. C.; Zhang, F.; Song, J.; Liu, L. F.; Si, Y.; Yu, J. Y.; Ding, B. Electrospun flexible nanofibrous membranes for oil/water separation. J. Mater. Chem. A 2019, 7, 20075–20102.

    Article  CAS  Google Scholar 

  9. Zhang, W. B.; Zhu, Y. Z.; Liu, X.; Wang, D.; Li, J. Y.; Jiang, L.; Jin, J. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chem. Int. Ed. 2014, 53, 856–860.

    Article  CAS  Google Scholar 

  10. Tao, M. M.; Xue, L. X.; Liu, F.; Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv. Mater. 2014, 26, 2943–2948.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, Y. Z.; Wang, Z. L.; Zhang, F.; Gao, S. J.; Wang, A. Q.; Fang, W. X.; Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 2018, 28, 1804121.

    Article  CAS  Google Scholar 

  12. Cui, Z. L.; Hassankiadeh, N. T.; Lee, S. Y.; Lee, J. M.; Woo, K. T.; Sanguineti, A.; Arcella, V.; Arcella, Y. M.; Arcella, E. Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J. Membr. Sci. 2013, 444, 223–236.

    Article  CAS  Google Scholar 

  13. Thankamony, R. L.; Li, X.; Fan, X. L.; Sheng, G.; Wang, X. B.; Sun, S. Y.; Zhang, X. X.; Lai, Z. P. Preparation of highly porous polymer membranes with hierarchical porous structures via spinodal decomposition of mixed solvents with UCST phase behavior. ACS Appl. Mater. Interfaces 2018, 10, 44041–44049.

    Article  CAS  PubMed  Google Scholar 

  14. Cai, Q.; Xu, R. J.; Wu, S. Q.; Chen, C. B.; Mo, H. B.; Lei, C. H.; Li, L. B.; Li, Z. H. Influence of annealing temperatureon the lamellar and connecting bridgestructure of stretched polypropylene microporous membrane. Polym. Int. 2015, 64, 446–452.

    Article  CAS  Google Scholar 

  15. Liu, Z. J.; Wang, H. Y.; Wang, E. Q.; Zhang, X. G.; Yuan, R. X.; Zhu, Y. J. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. Polymer 2016, 82, 105–113.

    Article  CAS  Google Scholar 

  16. Jiang, J. H.; Zhu, L. P.; Zhang, H. T.; Zhu, B. K.; Xu, Y. Y. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci. 2014, 457, 73–81.

    Article  CAS  Google Scholar 

  17. Baqeri, M.; Abolhasani, M. M.; Mozdianfard, M. R.; Guo, Q. P.; Oroumei, A.; Naebe, M. Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(vinylidene fluoride) nanofibers. J. Appl. Polym. Sci. 2015, 132, 42304.

    Article  CAS  Google Scholar 

  18. Na, H. N.; Chen, P.; Wong, S. C.; Hague, S.; Li, Q. Fabrication of PVDF/PVA microtubules by coaxial electrospinning. Polymer 2012, 53, 2736–2743.

    Article  CAS  Google Scholar 

  19. Leaper, S.; Cáceres, E. O. A.; Luque-Alled, J. M.; Cartmell, S. H.; Gorgojo, P. POSS-functionalized graphene oxide/PVDF electrospun membranes for complete arsenic removal using membrane distillation. ACS Appl. Polym. Mater. 2021, 3(4), 1854–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang, W. G.; Yun, J. H.; Jeon, K.; Byun, H. PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Adv. 2015, 5, 46711–46717.

    Article  CAS  Google Scholar 

  21. Ma, F. F.; Zhang, N.; Wei, X.; Yang, J. H.; Wang, Y.; Zhou, Z. W. Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities. J. Mater. Chem. A 2017, 5, 14430–14443.

    Article  CAS  Google Scholar 

  22. Zhang, W. B.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013, 25, 2071–2076.

    Article  CAS  PubMed  Google Scholar 

  23. Ren, Y.; Ma, Y.; Min, G.; Zhang, W.; Lv, L.; Zhang, W. A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: additional functions of adsorption and catalytic oxidation. Sci. Total Environ. 2021, 762, 143083.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, P. F.; Liu, W.; Rajabzadeh, S.; Jia, Y. D.; Shen, Q.; Fang, C. J.; Kato, N.; Matsuyama, H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J. Membr. Sci. 2021, 636, 119596.

    Article  CAS  Google Scholar 

  25. Liu, G. L.; Tsen, W. C.; Jang, S. C.; Hu, F. Q.; Zhong, F.; Liu, H.; Wang, G. J.; Wen, S.; Zheng, G. W.; Gong, C. L. Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells. J. Membr. Sci. 2019, 591, 117321.

    Article  CAS  Google Scholar 

  26. Gong, C. L.; Liu, H.; Zhang, B. Q.; Wang, G. J.; Cheng, F.; Zheng, G. W.; Wen, S.; Xue, Z. G.; Xie, X. L. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J. Membr. Sci. 2017, 535, 113–121.

    Article  CAS  Google Scholar 

  27. Chew, M. G. P.; Zhang, Y. J.; Goh, K. L.; Ho, J. S.; Xu, R.; Wang, R. Hierarchically structured janus membrane surfaces for enhanced membrane distillation performance. ACS Appl. Mater. Interfaces 2019, 11, 25524–25534.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, G. L.; Tsen, W. C.; Jang, S. C.; Hu, F. Q.; Zhong, F.; Zhang, B. Q.; Wang, J.; Liu, H.; Wang, G. J.; Wen, S.; Gong, C. L. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J. Membr. Sci. 2020, 611, 118242.

    Article  CAS  Google Scholar 

  29. Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Liu, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

    Article  CAS  Google Scholar 

  30. Guan, X. Y.; Xu, B. G.; Gong, J. L. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020, 70, 104516.

    Article  CAS  Google Scholar 

  31. Chen, Q. T.; Yang, B.; Ding, M. Y.; Pan, Y.; Qian, J. S.; Zheng, Z. Z.; Wu, B.; Miao, J. B.; Xia, R.; Tu, Y. L.; Shi, Y. Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): effect of SiO2@PDA nanoparticles. Eur. Polym. J. 2020, 140, 110039.

    Article  CAS  Google Scholar 

  32. Chi, Q. G.; Ma, T.; Zhang, Y.; Chen, Q. G.; Zhang, C. H.; Cui, Y.; Zhang, T. D.; Lin, J. Q.; Wang, X.; Lei, Q. Q. Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduction of the hybrid CoFe2O4@BZT-BCT nanofibers. ACS Sustain. Chem. Eng. 2018, 6, 403–412.

    Article  CAS  Google Scholar 

  33. Chew, N. G. P.; Zhao, S. S.; Malde, C.; Wang, R. Polyvinylidene fluoride membrane modification via oxidant-induced dopamine polymerization for sustainable direct-contact membrane distillation. J. Membr. Sci. 2018, 563, 31–42.

    Article  CAS  Google Scholar 

  34. Luo, C. D.; Liu, Q. X. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 8297–8307.

    Article  CAS  PubMed  Google Scholar 

  35. Wu, C. L.; Wang, H. Y.; Wei, Z.; Li, C.; Luo, Z. D. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: preparation, characterization and their adsorption properties towards heavy metal ions. Appl. Surf. Sci. 2015, 346, 207–215.

    Article  CAS  Google Scholar 

  36. Liu, Q.; Huang, B. X.; Huang, A. S. Polydopamine-based superhydrophobic membranes for biofuel recovery. J. Mater. Chem. A 2013, 1, 11970–11974.

    Article  CAS  Google Scholar 

  37. Liao, X. L.; Sun, D. X.; Cao, S.; Zhang, N.; Huang, T.; Lei, Y. Z.; Wang, Y. Freely switchable super-hydrophobicity and superhydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. J. Hazard. Mater. 2021, 416, 125926.

    Article  CAS  PubMed  Google Scholar 

  38. Wei, X.; Huang, T.; Nie, J.; Yang, J. H.; Qi, X. D.; Zhou, Z. W.; Wang, Y. Bio-inspired functionalization of microcrystalline cellulose aerogel with high adsorption performance toward dyes. Carbohydr. Polym. 2018, 198, 546–555.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, N.; Wang, Y. B.; Shang, B.; Wen, P. H.; Peng, B.; Deng, Z. W. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J. Colloid Interface Sci. 2018, 531, 300–310.

    Article  CAS  PubMed  Google Scholar 

  40. Qiu, L.; Sun, Y. H.; Guo, Z. G. Designing novel superwetting surfaces for high-efficiency oil—water separation: design principles, opportunities, trends and challenges. J. Mater. Chem. A 2020, 8, 16831–16853.

    Article  CAS  Google Scholar 

  41. Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv. Mater. 2020, 32, 1907505.

    Article  CAS  Google Scholar 

  42. Zhao, D.; Kim, F. J.; Ignacz, G.; Pogany, P.; Lee, Y. M.; Szekely, G. Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine. ACS Nano 2019, 13, 125–133.

    Article  CAS  PubMed  Google Scholar 

  43. Cui, Z. L.; Hassankiadeh, N. T.; Zhuang, Y. B.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126.

    Article  CAS  Google Scholar 

  44. Zhao, X.; Chen, S.; Zhang, J.; Zhang, W.; Wang, X. Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: special “orientation” behavior, morphology, and thermal properties. J. Cryst. Growth 2011, 328, 74–80.

    Article  CAS  Google Scholar 

  45. Xu, X. L.; Yang, C. J.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W. Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites, Part B 2017, 109, 91–100.

    Article  CAS  Google Scholar 

  46. Wang, S.; Du, X. S.; Deng, S.; Fu, X. H.; Do, Z. L.; Cheng, X.; Wang, H. B. A Polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose 2019, 26, 7009–7023.

    Article  CAS  Google Scholar 

  47. Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, J. M.; Ji, X. Y.; Yin, M.; Guo, S. Y.; Shen, J. B. Poly (vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: toward high permittivity and low dielectric loss. Compos. Sci. Technol. 2017, 144, 79–88.

    Article  CAS  Google Scholar 

  49. Jia, S. Y.; Tang, D. Y.; Zhou, Y. H.; Du, Y. C.; Peng, J.; Sun, Z. J.; Yang, X. Polydopamine microsphere-incorporated electrospun fibers as novel adsorbents for dual-responsive adsorption of methylene blue. ACS Appl. Mater. Interfaces 2020, 12, 49723–49736.

    Article  CAS  PubMed  Google Scholar 

  50. Jain, R.; Sikarwar, S. Adsorptive and desorption studies on toxic dye erioglaucine over deoiled mustard. J. Dispersion Sci. Technol. 2010, 31, 883–893.

    Article  CAS  Google Scholar 

  51. Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465.

    Article  CAS  Google Scholar 

  52. Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Franklin Inst. 1917, 183, 102–105.

    Article  Google Scholar 

  53. Freundlich, H.; Hatfield, H. S. Colloid and capillary chemistry, Methuen and Co. Ltd. London, U.K., 1926.

    Google Scholar 

  54. Ma, F. F.; Zhang, D.; Huang, T.; Zhang, N.; Wang, Y. Ultrasonication-assisted deposition of graphene oxide on electrospun poly(vinylidene fluoride) membrane and the adsorption behavior. Chem. Eng. J. 2019, 358, 1065–1073.

    Article  CAS  Google Scholar 

  55. Jun, L. Y.; Karri, R. R.; Mubarak, N. M.; Yon, L. S.; Bing, C. H.; Khalid, M.; Jagadish, P.; Abdullah, E. C. Modelling of methylene blue adsorption using peroxidase immobilized functionalized buckypaper/polyvinyl alcohol membrane via ant colony optimization. Environ. Pollut. 2020, 259, 113940.

    Article  PubMed  CAS  Google Scholar 

  56. Sabarish, R.; Unnikrishnan, G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 2018, 199, 129–140.

    Article  CAS  PubMed  Google Scholar 

  57. Yang, Y.; Xiong, Z.; Wang, Z.; Liu, Y.; He, Z. J.; Cao, A. K.; Zhou, L.; Zhu, L. J.; Zhao, S. F. Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. J. Membr. Sci. 2021, 621, 119000.

    Article  CAS  Google Scholar 

  58. Cheng, J. Q.; Zhan, C. H.; Wu, J. H.; Cui, Z. X.; Si, J. H.; Wang, Q. T.; Peng, X. F.; Turng, L. S. Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 2020, 5, 5389–5400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Jannoke, L. Study of methylene blue adsorption on keratin nanofibrous membranes. J. Hazard. Mater. 2014, 268, 156–165.

    Article  CAS  PubMed  Google Scholar 

  60. Zulfikar, M. A.; Maulina, D.; Nasir, M.; Handayani, N.; Handajani, M. Removal of methylene blue from aqueous solution using poly(acrylic acid)/SiO2 and functionalized poly(acrylic acid)/SiO2 composite nanofibers. Environ. Nanotechnol. Monit. Manage. 2020, 14, 100381.

    Google Scholar 

  61. Zhao, R.; Wang, Y.; Li, X.; Sun, B. L.; Wang, C. Synthesis of β-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue. ACS Appl. Mater. Interfaces 2015, 7, 26649–26657.

    Article  CAS  PubMed  Google Scholar 

  62. Shan, H. R.; Wang, X. Q.; Shi, F. H.; Yan, J. H.; Yu, J. Y.; Ding, B. Hierarchical porous structured SiO2/SnO2 nonofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 2017, 9, 18966–18976.

    Article  CAS  PubMed  Google Scholar 

  63. Cao, S.; Hu, S. Z.; Luo, D.; Huang, T.; Zhang, N.; Lei, Y. Z.; Wang, Y. Bio-inspired one-step structure adjustment and chemical modification of melamine foam toward highly efficient removal of hexavalent chromium ions. Sep. Purif. Technol. 2021, 275, 119257.

    Article  CAS  Google Scholar 

  64. Wasim, M.; Sagar, S.; Sabir, A.; Shafiq, M.; Jamil, T. Decoration of open pore network in polyvinylidene fluoride/MWCNTs with chitosan for the removal of reactive orange 16 dye. Carbohydr. Polym. 2017, 174, 474–483.

    Article  CAS  PubMed  Google Scholar 

  65. Pietrucci, F.; Boero, M.; Andreoni, W. How natural materials remove heavy metals from water: mechanistic insights from molecular dynamics simulations. Chem. Sci. 2021, 12, 2979–2985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu, W. J.; Dang, Q. F.; Liu, C. S.; Yu, D. J.; Chang, G. Z.; Pu, X. Y.; Wang, Q. Q.; Sun, H. T.; Zhang, B. N.; Cha, D. S. Cr(VI) and Pb(II) capture on pH-responsive polyethyleneimine and chloroacetic acid functionalized chitosan microspheres. Carbohydr. Polym. 2019, 219, 353–367.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y.; Yin, X. Y.; Yu, B.; Wang, X. L.; Guo, Q. Q.; Yang, J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption. ACS Appl. Mater. Interfaces 2019, 11, 32559–32568.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, N.; Qi, Y. F.; Zhang, Y. N.; Luo, J. L.; Cui, P.; Jiang, W. A review on oil/water mixture separation material. Ind. Eng. Chem. Res. 2020, 59, 14546–14568.

    Article  CAS  Google Scholar 

  69. Zhang, D.; Jin, X. Z.; Huang, T.; Zhang, N.; Qi, X. D.; Yang, J. H.; Zhou, Z. W.; Wang, Y. Electrospun fibrous membranes with dual-scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation. ACS Appl. Mater. Interfaces 2019, 11, 5073–5083.

    Article  CAS  PubMed  Google Scholar 

  70. Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal. Nanoscale 2015, 7, 2625–2632.

    Article  CAS  PubMed  Google Scholar 

  71. Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y. Controlling the secondary surface morphology of electrospun PVDF nanofibers by regulating the solvent and relative humidity. Nanoscale Res. Lett. 2018, 13, 285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gu, J. C.; Xiao, P.; Chen, P.; Zhang, L.; Wang, H. L.; Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, J. W.; Chen, T. Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 5968–5973.

    Article  CAS  PubMed  Google Scholar 

  73. Pan, Y. Y.; Li, R. S.; Li, P. H.; Wang, Y.; Zhu, Y. L.; Xu, Z. Q.; Chen, X. Q.; Sun, Z. G.; Li, C.; Jiang, B. B. Facile fabrication of flexible, large-sized organic nanoporous membrane by electrospinning technique based on microporous polymer nanoparticles. Microporous Mesoporous Mater. 2021, 317, 110955.

    Article  CAS  Google Scholar 

  74. Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207–3212.

    Article  CAS  PubMed  Google Scholar 

  75. Kollarigowda, R. H.; Abraham, S.; Montemagno, C. D. Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 29812–29819.

    Article  CAS  PubMed  Google Scholar 

  76. Fu, Y.; Yang, L.; Zhang, J. H.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Li, Y. W.; Gu, Z. P. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633.

    Article  CAS  PubMed  Google Scholar 

  77. Iqbal, Z.; Lai, E. P. C.; Avis, T. J. Antimicrobial effect of polydopamine coating on escherichia coli. J. Mater. Chem. 2012, 22, 21608–21612.

    Article  CAS  Google Scholar 

  78. Liu, H.; Qu, X.; Tan, H. Q.; Song, J. L.; Lei, M.; Kim, E.; Payne, G. F.; Liu, C. S. Role of polydopamine’s redox-activity on its prooxidant, radical-scavenging, and antimicrobial activities. Acta Biomater. 2019, 88, 181–196.

    Article  CAS  PubMed  Google Scholar 

  79. Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 26674–26683.

    Article  CAS  PubMed  Google Scholar 

  80. Wagner, A. B. Bacterial food poisoning. Texas Agric. Ext. Publication 1989, 1540, 1–6.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51473137), the Youth Science and Technology Innovation Team of Sichuan Province of Functional Polymer Composites (No. 2021JDTD0009), and the Sichuan Science and Technology Program (No. 2020YFG0099). SEM characterizations were carried out at the Analytic and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Zhang or Yong Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, DX., Liao, XL., Zhang, N. et al. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment. Chin J Polym Sci 40, 738–753 (2022). https://doi.org/10.1007/s10118-022-2714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2714-4

Keywords

Navigation