Skip to main content
Log in

Controlling Membrane Phase Separation of Polymersomes for Programmed Drug Release

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Programmed release of small molecular drugs from polymersomes is of great importance in drug delivery. A significant challenge is to adjust the membrane permeability in a well-controlled manner. Herein, we propose a strategy for controlling membrane phase separation by photo-cross-linking of the membrane-forming blocks with different molecular architectures. We synthesized three amphiphilic block copolymers with different membrane-forming blocks, which are poly(ethylene oxide)43-b-poly((ε-caprolactone)45-stat-((a-(cinnamoyloxymethyl)-1,2,3-triazol)caprolactone)25) (PEO43-b-P(CL45-stat-CTCL25)), PEO43-b-P(CL108-stat-CTCL16), and PEO43-b-PCTCL4-b-PCL79. These polymers were self-assembled into polymersomes using either a solvent-switch or powder rehydration method, and the obtained polymersomes were characterized by dynamic light scattering and transmission electron microscopy. Then the phase separation patterns within the polymersome membranes were investigated by mesoscopic dynamics (MesoDyn) simulations. To further confirm the change of the membrane permeability that resulted from the phase separation within the membrane, doxorubicin, as a small molecular drug, was loaded and released from the polymersomes. Due to the incompatibility between membrane-forming moieties (PCTCL and PCL), phase separation occurs and the release rate can be tuned by controlling the membrane phase pattern or by photo-cross-linking. Moreover, besides the compacting effect by formation of chemical bonds in the membrane, the cross-linking process can act as a driving force to facilitate the rearrangement and re-orientation of the phase pattern, which also influences the drug release behavior by modulating the cross-membrane distribution of the amorphous PCTCL moieties. In this way, the strategy of focusing on the membrane phase separation for the preparation of the polymersomes with finely tunable drug release rate can be envisioned and designed accordingly, which is of great significance in the field of delivery vehicles for programmed drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

    Article  CAS  PubMed  Google Scholar 

  2. Dou, Y.; Li, C. W.; Li, L. L.; Guo, J. W.; Zhang, J. X. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J. Control. Release 2020, 327, 641–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hassan, S.; Prakash, G.; Ozturk, A. B.; Saghazadeh, S.; Sohail, M. F.; Seo, J.; Dokmeci, M. R.; Zhang, Y. S.; Khademhosseini, A. Evolution and clinical translation of drug delivery nanomaterials. Nano Today 2017, 15, 91–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prasanna, A.; Pooja, R.; Suchithra, V.; Ravikumar, A.; Gupta, P. K.; Niranjan, V. Smart drug delivery systems for cancer treatment using nanomaterials. Mater. Today: Proc. 2018, 5, 21047–21054.

    CAS  Google Scholar 

  5. Rasheed, T.; Nabeel, F.; Raza, A.; Bilal, M.; Iqbal, H. M. N. Biomimetic nanostructures/cues as drug delivery systems: a review. Mater. Today Chem. 2019, 13, 147–157.

    Article  CAS  Google Scholar 

  6. Jiang, J.; Zhuravlev, E.; Hu, W. B.; Schick, C.; Zhou, D. S. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese J. Polym. Sci. 2017, 35, 1009–1019.

    Article  CAS  Google Scholar 

  7. Sharma, A. K.; Prasher, P.; Aljabali, A. A.; Mishra, V.; Gandhi, H.; Kumar, S.; Mutalik, S.; Chellappan, D. K.; Tambuwala, M. M.; Dua, K.; Kapoor, D. N. Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv. Transl. Res. 2020, 10, 1171–1190.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. S.; Feijen, J. Polymersomes for drug delivery: design, formation and characterization. J. Control. Release 2012, 161, 473–483.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, D. Q.; Sun, H.; Xiao, Y. F.; Chen, S.; Cornel, E. J.; Zhu, Y. Q.; Du, J. Z. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J. Control. Release 2020, 326, 365–386.

    Article  CAS  PubMed  Google Scholar 

  10. Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

    Article  CAS  Google Scholar 

  11. Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822.

    Article  CAS  PubMed  Google Scholar 

  12. Felice, B.; Prabhakaran, M. P.; Rodriguez, A. P.; Ramakrishna, S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng., C 2014, 41, 178–195.

    Article  CAS  Google Scholar 

  13. Sun, R.; Qiu, N. S.; Shen, Y. Q. Polymeric cancer nanomedicines: Challenge and development. Acta Polymerica Sinica (in Chinese) 2019, 50, 588–601.

    CAS  Google Scholar 

  14. Davoodi, P.; Lee, L. Y.; Xu, Q. X.; Sunil, V.; Sun, Y. J.; Soh, S.; Wang, C. H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 2018, 132, 104–138.

    Article  CAS  PubMed  Google Scholar 

  15. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 1999, 99, 3181–3198.

    Article  CAS  PubMed  Google Scholar 

  16. He, F.; Zhang, M. J.; Wang, W.; Cai, Q. W.; Su, Y. Y.; Liu, Z.; Faraj, Y.; Ju, X. J.; Xie, R.; Chu, L. Y. Designable polymeric microparticles from droplet microfluidics for controlled drug release. Adv. Mater. Technol. 2019, 4, 1800687.

    Article  CAS  Google Scholar 

  17. Le Meins, J. F.; Sandre, O.; Lecommandoux, S. Recent trends in the tuning of polymersomes’ membrane properties. Eur. Phys. J. E 2011, 34, 14.

    Article  PubMed  CAS  Google Scholar 

  18. Chidanguro, T.; Ghimire, E.; Liu, C. H.; Simon, Y. C. Polymersomes: breaking the glass ceiling. Small 2018, 14, 1802734.

    Article  CAS  Google Scholar 

  19. Du, F. F.; Bobbala, S.; Yi, S. J.; Scott, E. A. Sequential intracellular release of water-soluble cargos from shell-crosslinked polymersomes. J. Control. Release 2018, 282, 90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, A. J.; Pearce, A. K.; Foster, J. C.; O’Reilly, R. K. Probing and tuning the permeability of polymersomes. ACS Cent. Sci. 2021, 7, 30–38.

    Article  CAS  PubMed  Google Scholar 

  21. Larranaga, A.; Lomora, M.; Sarasua, J. R.; Palivan, C. G.; Pandit, A. Polymer capsules as micro-/nanoreactors for therapeutic applications: current strategies to control membrane permeability. Prog. Mater. Sci. 2017, 90, 325–357.

    Article  CAS  Google Scholar 

  22. Leong, J.; Teo, J. Y.; Aakalu, V. K.; Yang, Y. Y.; Kong, H. Engineering polymersomes for diagnostics and therapy. Adv. Healthc. Mater. 2018, 7, 1701276.

    Article  CAS  Google Scholar 

  23. Yao, C. Z.; Wang, X. R.; Hu, J. M.; Liu, S. Y. Cooperative modulation of bilayer permeability and microstructures of polymersomes. Acta Polymerica Sinica (in Chinese) 2019, 50, 553–566.

    CAS  Google Scholar 

  24. Chang, H. Y.; Lin, Y. L.; Sheng, Y. J.; Tsao, H. K. Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules 2013, 46, 5644–5656.

    Article  CAS  Google Scholar 

  25. Yan, Q.; Wang, J. B.; Yin, Y. W.; Yuan, J. Y. Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew. Chem. Int. Ed. 2013, 52, 5070–5073.

    Article  CAS  Google Scholar 

  26. Thambi, T.; Deepagan, V. G.; Ko, H.; Suh, Y. D.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Park, J. H. Biostable and bioreducible polymersomes for intracellular delivery of doxorubicin. Polym. Chem. 2014, 5, 4627–4634.

    Article  CAS  Google Scholar 

  27. Chen, S.; Qin, J. L.; Du, J. Z. Two principles for polymersomes with ultrahigh biomacromolecular loading efficiencies: acid-induced adsorption and affinity-enhanced attraction. Macromolecules 2020, 53, 3978–3993.

    Article  CAS  Google Scholar 

  28. Varlas, S.; Foster, J. C.; Georgiou, P. G.; Keogh, R.; Husband, J. T.; Williams, D. S.; O’Reilly, R. K. Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale 2019, 11, 12643–12654.

    Article  CAS  PubMed  Google Scholar 

  29. Gaitzsch, J.; Hirschi, S.; Freimann, S.; Fotiadis, D.; Meier, W. Directed insertion of light-activated proteorhodopsin into asymmetric polymersomes from an ABC block copolymer. Nano Lett. 2019, 19, 2503–2508.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, M.; Grzelakowski, M.; Zilles, J.; Clark, M.; Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20719–20724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, S.; Lin, S.; Xi, Y. J.; Xiao, Y. F.; Du, J. Z. Polymersomes with inhomogeneous membranes, asymmetrical coronas and fused membranes and coronas. Chin. Sci. Bull. 2020, 65, 2615–2626.

    Article  Google Scholar 

  32. Wang, F. Y. K.; Xiao, J. G.; Chen, S.; Sun, H.; Yang, B.; Jiang, J. H.; Zhou, X.; Du, J. Z. Polymer vesicles: Modular platforms for cancer theranostics. Adv. Mater. 2018, 30, 1705674.

    Article  CAS  Google Scholar 

  33. Xiao, Y. F.; Sun, H.; Du, J. Z. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc. 2017, 139, 7640–7647.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562–5568.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, Y. Q.; Wang, F. Y. K.; Zhang, C.; Du, J. Z. Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano 2014, 8, 6644–6654.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y. Y.; Chen, L. S.; Sun, M.; Wang, C. Y.; Fan, Z.; Du, J. Z. Biodegradable polypeptide-based vesicles with intrinsic blue fluorescence for antibacterial visualization. Chinese J. Polym. Sci. 2021, 39, 1412–1420.

    Article  CAS  Google Scholar 

  37. Liang, R.; Chen, Y. C.; Zhang, C. Q.; Yin, J.; Liu, X. L.; Wang, L. K.; Kong, R.; Feng, X.; Yang, J. J. Crystallization behavior of biodegradable poly(ethylene adipate) modulated by a benign nucleating agent: zinc phenylphosphonate. Chinese J. Polym. Sci. 2017, 35, 558–568.

    Article  CAS  Google Scholar 

  38. Bicerano, J. Prediction of the properties of polymers from their structures. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1996, C36, 161–196.

    Article  CAS  Google Scholar 

  39. Altevogt, P.; Evers, O. A.; Fraaije, J. G. E. M.; Maurits, N. M.; van Vlimmeren, B. A. C. The MesoDyn project: software for mesoscale chemical engineering. J. Mol. Struct.: THEOCHEM 1999, 463, 139–143.

    Article  CAS  Google Scholar 

  40. Jiang, J. H.; Zhu, Y. Q.; Du, J. Z. Challenges and perspective on ring-opening polymerization-induced self-assembly. Acta Chim. Sin. 2020, 78, 719–724.

    Article  CAS  Google Scholar 

  41. Gartner, T. E.; Jayaraman, A. Modeling and simulations of polymers: a roadmap. Macromolecules 2019, 52, 755–786.

    Article  CAS  Google Scholar 

  42. Zhu, Y. L.; Lu, Z. Y. Dynamics simulations of supramolecular and polymeric self-assemblies. Acta Polymerica Sinica (in Chinese) 2021, 52, 884–897.

    Google Scholar 

  43. Zhao, R.; Zhou, Y. J.; Jia, K. C.; Yang, J.; Perrier, S.; Huang, F. H. Fluorescent supramolecular polymersomes based on pillararene/paraquat molecular recognition for pH-controlled drug release. Chinese J. Polym. Sci. 2020, 38, 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. D. is financially supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21925505) and Shanghai International Scientific Collaboration Fund (No. 21520710100). E. J. C. is supported by the National Natural Science Foundation of China (No. 2210010521), the China Postdoctoral Science Foundation (No. 2020M671197) and International Postdoctoral Exchange Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Du.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Cornel, E.J. & Du, JZ. Controlling Membrane Phase Separation of Polymersomes for Programmed Drug Release. Chin J Polym Sci 40, 1006–1015 (2022). https://doi.org/10.1007/s10118-022-2683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2683-7

Keywords

Navigation