Skip to main content
Log in

Characterization of a Multi-responsive Magnetic Graphene Oxide Nanocomposite Hydrogel and Its Application for DOX Delivery

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposite hydrogels are one of the most important types of biomaterials which can be used in many different applications such as drug delivery and tissue engineering. Incorporation of nanoparticles within a hydrogel matrix can provide unique characteristics like remote stimulate and improved mechanical strength. In this study, the synthesis of graphene oxide and graphene oxide nanocomposite hydrogel has been studied. Nanocomposite hydrogel was synthesized using carboxymethyl cellulose as a natural base, acrylic acid as a comonomer, graphene oxide as a filler, ammonium persulfate as an initiator, and iron nanoparticles as a crosslinking agent. The effect of reaction variables such as the iron nanoparticles, graphene oxide, ammonium persulfate, and acrylic acid were examined to achieve a hydrogel with maximum absorbency. Doxorubicin, an anti-cancer chemotherapy drug, was loaded into this hydrogel and its release behaviors were examined in the phosphate buffer solutions with different pH values. The structure of the graphene oxide and the optimized hydrogel were confirmed by Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurdtabar, M.; Rezanejade Bardajee, G. Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly(acrylic acid) grafted onto sodium alginate. Polym. Bull. 2020, 77, 3001–3015.

    Article  CAS  Google Scholar 

  2. Kurdtabar, M.; Peyvand Kermani, Z.; Bagheri Marandi, G. Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iran Polym. J. 2015, 24, 791–803.

    Article  CAS  Google Scholar 

  3. Abd El-Mohdy, H.; Hegazy, E.; El-Nesr, E.; El-Wahab, M. Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab. J. Chem. 2016, 9, S1627–S1635.

    Article  CAS  Google Scholar 

  4. Rivero, R. E.; Capella, V.; Liaudat, A.C.; Bosch, P.; Barbero, C. A.; Rodríguez, N. Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation. RSC Adv. 2020, 10, 5827–5837.

    Article  CAS  Google Scholar 

  5. Tirumala, V. R.; Tominaga, T.; Lee, S.; Butler, P. D.; Lin, E. K.; Gong, J. P. Molecular model for toughening in double-network hydrogels. J. Phys. Chem. B 2008, 112, 8024–8031.

    Article  CAS  PubMed  Google Scholar 

  6. Haraguchi, K. Nanocomposite hydrogels. Curr. Opin. Solid. State. Mater. Sci. 2007, 11, 47–54.

    Article  CAS  Google Scholar 

  7. Zhang, H.; Zhai, D.; He, Y. Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Adv. 2014, 4, 44600–46609.

    Article  CAS  Google Scholar 

  8. Liu, R.; Liang, S.; Tang, X. Z.; Yan, D.; Li, X.; Yu, Z. Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012, 22, 14160–14167.

    Article  CAS  Google Scholar 

  9. Su, J.; Cao, M.; Ren, L.; Hu, C. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.

    Article  CAS  Google Scholar 

  10. Moon, Y. E.; Jung, G.; Yun, J.; Kim, H. I. Poly(vinyl alcohol)/poly (acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater. Sci. Eng. B 2013, 178, 1097–1103.

    Article  CAS  Google Scholar 

  11. Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1476–1481.

    Article  CAS  Google Scholar 

  12. Oh, J. K.; Park, J. M. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog. Polym. Sci. 2011, 36, 168–189.

    Article  CAS  Google Scholar 

  13. Sharifi, S.; Seyednejad, H.; Laurent, S.; Atyabi, F.; Saei, A. A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol. Imaging 2015, 10, 329–355.

    Article  CAS  PubMed  Google Scholar 

  14. Dias, A.; Hussain, A.; Marcos, A.; Roque, A. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 2011, 29, 142–155.

    Article  CAS  PubMed  Google Scholar 

  15. Ruzene, D. S.; Gonçalves, A. R.; Teixeira, J. A.; De Amorim, M. T. P. Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions. Appl. Biochem. 2007, 573–582.

  16. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  CAS  PubMed  Google Scholar 

  17. Pourjavadi, A.; Kurdtabar, M.; Ghasemzadeh, H. Salt- and pH-resisting collagen-based highly porous hydrogel. Polym. J. 2008, 40, 94–103.

    Article  CAS  Google Scholar 

  18. Pourjavadi, A.; Kurdtabar, M. Effect of different bases and neutralization steps on porosity and properties of collagen-based hydrogels. Polym. Int. 2010, 59, 36–42.

    Article  CAS  Google Scholar 

  19. Pourjavadi, A.; Mazaheri Tehrani, Z.; Jokar, S. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: designed for targeted and controlled doxorubicin delivery. J. Ind. Eng. Chem. 2015, 28, 45–53.

    Article  CAS  Google Scholar 

  20. Kurdtabar, M.; Nezam, H.; Rezanejade Bardajee, G.; Dezfulian, M.; Salimi, H. Biocompatible magnetic hydrogel nanocomposite based on carboxymethylcellulose: synthesis, cell culture property and drug delivery. Polym. Sci. Ser. B. 2018, 60, 231–242.

    Article  CAS  Google Scholar 

  21. Jiao, T.; Guo, H.; Zhang, Q.; Peng, Q.; Tang, Y.; Yan, X. Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci. Rep. 2015, 5, 11873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su, C. Y.; Lu, A. Y.; Xu, Y.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332–2339.

    Article  CAS  PubMed  Google Scholar 

  23. Fu, L.; Zhu, D.; Yu, A. Galvanic replacement synthesis of silver dendrites-reduced graphene oxide composites and their surface-enhanced Raman scattering characteristics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 396–401.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, Y.; Zeng, M.; Ren, J.; Wang, J.; Fan, L.; Xu, Q. Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2012, 401, 97–106.

    Article  CAS  Google Scholar 

  25. Ho, C. Y.; Wang, H. W. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode. Appl. Surf. Sci. 2015, 357, 147–154.

    Article  CAS  Google Scholar 

  26. Abd El-Mohdy, H. Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as pH-sensitive hydrogel. Polym. Eng. Sci. 2014, 54, 2753–2761.

    Article  CAS  Google Scholar 

  27. Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H. Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 2014, 4, 4375.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oh, J.; Lee, J. H.; Koo, J. C.; Choi, H. R.; Lee, Y.; Kim, T. Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J. Mater. Chem. 2010, 20, 9200–9204.

    Article  CAS  Google Scholar 

  29. Braihi, A. J.; Salih, S. I.; Hashem, F. A.; Ahmed, J. K. Proposed cross-linking model for carboxymethyl cellulose/starch superabsorbent polymer blend. Int. J. Mater. Sci. Appl. 2014, 3, 363–369.

    Google Scholar 

  30. Mohkami, M.; Talaeipour, M. Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. Bioresources 2011, 6, 1988–2003.

    CAS  Google Scholar 

  31. Zarnegar, Z.; Safari, J. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications. Int. J. Biol. Macromol. 2015, 75, 21–31.

    Article  CAS  PubMed  Google Scholar 

  32. Piao, Y.; Chen, B. Self-assembled graphene oxide-gelatin nanocomposite hydrogels: Characterization, formation mechanisms, and pH-sensitive drug release behavior. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 356–367.

    Article  CAS  Google Scholar 

  33. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  CAS  Google Scholar 

  34. Bao, Y.; Ma, J.; Li, N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 2011, 84, 76–82.

    Article  CAS  Google Scholar 

  35. El-Sayed, S.; Mahmoud, K.; Fatah, A.; Hassen, A. TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B 2011, 406, 4068–4076.

    Article  CAS  Google Scholar 

  36. Li, W.; Sun, B.; Wu, P. Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydr. Polym. 2009, 78, 454–461.

    Article  CAS  Google Scholar 

  37. Davaran, S.; Alimirzalu, S.; Nejati-Koshki, K.; Nasrabadi, H. T.; Akbarzadeh, A.; Khandaghi, A. A. Physicochemical characteristics of Fe. Asian Pac. J. Cancer Prev. 2014, 15, 49–54.

    Article  PubMed  Google Scholar 

  38. Khosroshahi, M.E.; Ghazanfari, L.; Hassannejad, Z.; Lenhert, S. Invitro application of doxorubicin loaded magnetoplasmonic thermosensitive liposomes for laser hyperthermia and chemotherapy of breast cancer. J. Nanomed. Nanotechnol. 2015, 6, 298.

    Article  Google Scholar 

  39. Zhang, H.; Xie, A.; Wang, C.; Wang, H.; Shen, Y.; Tian, X. Novel rGO/a-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552.

    Article  CAS  Google Scholar 

  40. Pourjavadi, A, Ghasemzadeh, H, Soleyman, R. Characterization, and swelling behavior of alginate-g-poly (sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci. 2007, 105, 2631–2639.

    Article  CAS  Google Scholar 

  41. Hayati, M.; Rezanejade Bardajee, G.; Ramezani, M.; Mizani, F. Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. Inorg. Nano-Met. Chem. 2020, 50, 1189–1200.

    Article  CAS  Google Scholar 

  42. McCarty, M. F.; Whitaker, J. Manipulating tumor acidification as a cancer treatment strategy. Altern. Med. Rev. 2010, 15, 264–272.

    PubMed  Google Scholar 

  43. Neumann, A.; Jahnke, K.; Maier, H.; Ragoss, C. Biocompatibilty of silicon nitride ceramic in vitro. A comparative fluorescence-microscopic and scanning electron-microscopic study. Laryngorhino-otologie. 2004, 83, 845–851.

    Article  CAS  Google Scholar 

  44. El-Ghalbzouri, A.; Gibbs, S.; Lamme, E.; Van Blitterswijk, C. A.; Ponec, M. Effect of fibroblasts on epidermal regeneration. Br. J. Dermatol. 2002, 147, 230–243.

    Article  CAS  PubMed  Google Scholar 

  45. Falanga, V.; Margolis, D.; Alvarez, O.; Auletta, M.; Maggiacomo, F.; Altman, M. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch. Dermatol. 1998, 134, 293–300.

    Article  CAS  PubMed  Google Scholar 

  46. Slany, A.; Meshcheryakova, A.; Beer, A.; Ankersmit, H. J.; Paulitschke, V.; Gerner, C. Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling. Clin. Proteom. 2014, 11, 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kurdtabar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdtabar, M., Saif Heris, S. & Dezfulian, M. Characterization of a Multi-responsive Magnetic Graphene Oxide Nanocomposite Hydrogel and Its Application for DOX Delivery. Chin J Polym Sci 39, 1597–1608 (2021). https://doi.org/10.1007/s10118-021-2613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2613-0

Keywords

Navigation