Skip to main content
Log in

Hydroxyl-terminated Polyethylenes Bearing Functional Side Groups: Facile Synthesis and Their Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of hydroxyl-terminated polyethylenes (HTPE) bearing various functional side groups (e.g. carboxyl, ester and butane groups) were synthesized by the combination of ring-opening metathesis polymerization (ROMP) and visible light photocatalytic thiol-ene reaction. The products are named as α, ω-dihydroxyl-poly[(propionyloxythio)methinetrimethylene] (HTPEcarboxyl), α, ω-dihydroxyl-poly[(methylpropionatethio) methinetrimethylene] (HTPEester) and α, ω-dihydroxyl-poly[(butylthio) methinetrimethylene] (HTPEbutane), respectively. The investigation of ROMP indicated that the molecular weight of resultant hydroxyl-terminated polybutadiene (HTPB) can be tailored by varying the feed ratios of monomer to chain transfer agent (CTA). The exploration of the photocatalytic thiol-ene reaction between HTPB precursor and methyl 3-mercaptopropionate revealed that blue light as well as oxygen accelerated the reaction. 1H-NMR and 13C-NMR results verified all the double bonds in HTPB can be modified, and the main chain of resultant polymer can be considered as polyethylene. Subsequently, relationship between the structure of side groups and the thermal properties of functional PEs was studied. And the results suggested that the Tg was in the order of HTPEbutane<HTPEester<HTPEcarboxyl. Greater interaction between side groups resulted in higher Tg. Moreover, all the functional PE samples exhibited poor thermostability as compared to HTPB. Finally, the promising applications for functional PEs were explored. HTPEcarboxyl can be utilized as a smart material with pH-responsive properties due to its pH-dependent ionization of carboxyl side groups. HTPEbutane can be employed as a macro-initiator for building the triblock copolymer due to the presence of active hydroxyl end groups. HTPEester can serve as a plasticizer for PVC which can enhance the ductility of PVC without obviously sacrificing strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tellers, J.; Zych, A.; Neuteboom, P.; Soliman, M.; Vachon, J. Polyolefin copolymer PE-HEMA with increased metal adhesion properties. Eur. Polym. J. 2020, 131, 109721.

    Article  CAS  Google Scholar 

  2. Báez, J. E.; Ramírez-Hernández, A.; Marcos-Fernández, Á. Synthesis, characterization, and degradation of poly(ethylene-b-ε-caprolactone) diblock copolymer. Polym. Adv. Technol. 2010, 21, 55–64.

    Google Scholar 

  3. Lee, H. J.; Baek, J. W.; Kim, T. J.; Park, H. S.; Moon, S. H; Park, K. L.; Bae, S. M.; Park, J.; Lee, B. Y. Synthesis of long-chain branched polyolefins by coordinative chain transfer polymerization. Macromolecules 2019, 52, 9311–9021.

    Article  CAS  Google Scholar 

  4. Peng, B.; Jiang, Y.; Zhu, A. A novel modification of carbon nanotubes for improving the electrical and mechanical properties of polyethylene composites. Polym. Test. 2019, 74, 72–76.

    Article  CAS  Google Scholar 

  5. Ramírez-Hernández, A.; Hernández-Mota, C. E.; Páramo-Calderón, D. E.; González-García, G.; Báez-García, E.; Rangel-Porras, G.; Vargas-Torres, A.; Aparicio-Saguilán, A. Thermal, morphological and structural characterization of a copolymer of starch and polyethylene. Carbohyd. Res. 2020, 488, 107907.

    Article  CAS  Google Scholar 

  6. Alshumrani, R. A.; Hadjichristidis, N. Well-defined non-linear polyethylene-based macromolecular architectures. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2129–2136.

    Article  CAS  Google Scholar 

  7. Ntetsikas, K.; Zapsas, G.; Bilalis, P.; Gnanou, Y.; Feng, X. Y.; Thomas, E. L.; Hadjichristidis, N. Complex star architectures of well-defined polyethylene-based Co/terpolymers. Macromolecules 2020, 53, 4355–4365.

    Article  CAS  Google Scholar 

  8. Kimani, S. M.; Thompson, R. L.; Hutchings, L. R.; Clarke, N.; Billah, S. M. R.; Sakai, V. G.; Rogers, S. E. Multihydroxyl end functional polyethylenes: synthesis, bulk and interfacial properties of polymer surfactants. Macromolecules 2014, 47, 2062–2071.

    Article  CAS  Google Scholar 

  9. Tian, B. Z.; Cai, Y. Q.; Zhang, X. W.; Fan, H.; Li, B. G. Design of well-defined polyethylene-g-poly-methyltrifluorosiloxane graft copolymers via direct copolymerization of ethylene with polyfluorosiloxane macromonomers. Ind. Eng. Chem. Res. 2020, 59, 4557–4567.

    Article  CAS  Google Scholar 

  10. Bergerbit, C.; Baffie, F.; Wolpers, A.; Dugas, P.; Boyron, O.; Taam, M.; Lansalot, M.; Monteil, V.; D’Agosto, F. Ethylene polymerization-induced self-assembly (PISA) of poly(ethylene oxide)-block-polyethylene copolymers via RAFT. Angew. Chem. Int. Ed. 2020, 132, 10471–10476.

    Article  Google Scholar 

  11. Han, C. J; Lee, M. S.; Byun, D.; Kim, S. Y. Synthesis of hydroxy-terminated polyethylene via controlled chain transfer reaction and poly(ethylene-b-caprolactone) block copolymer. Macromolecules 2002, 35, 8923–8925.

    Article  CAS  Google Scholar 

  12. Demarteau, J.; Scholten, P. B. V.; Kermagoret, A.; Winter, J. D.; Meier, M. A. R.; Monteil, V.; Debuigne, A.; Detrembleur, C. Functional polyethylene (PE) and PE-based block copolymers by organometallic-mediated radical polymerization. Macromolecules 2019, 52, 9053–9063.

    Article  CAS  Google Scholar 

  13. Chen, M.; Chen, C. L. A versatile ligand platform for palladium- and nickel-catalyzed ethylene copolymerization with polar monomers. Angew. Chem. Int. Ed. 2018, 130, 3148–3152.

    Article  Google Scholar 

  14. Cui, D. M. Studies on homo- and co-polymerizations of polar and non-polar monomers using rare-earth metal catalysts. Acta Polymerica Sinica (in Chinese) 2020, 51, 12–29.

    Google Scholar 

  15. Feng, Y. C.; Jie, S. Y.; Li, B. Synthesis of ethylene/vinyl ester copolymers with pendent linear branches via ring-opening metathesis polymerization of fatty acid-derived cyclooctenes. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2211–2220.

    Article  CAS  Google Scholar 

  16. Scherman, O. A.; Walker, R.; Grubb, R. H. Synthesis and characterization of stereoregular ethylene-vinyl alcohol copolymers made by ring-opening metathesis polymerization. Macromolecules 2005, 38, 9009–9014.

    Article  CAS  Google Scholar 

  17. Franssen, N. M. G.; Reek, J. N. H.; Bruin, B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev. 2013, 42, 5809–5832.

    Article  CAS  PubMed  Google Scholar 

  18. Rakotonirina, M. D.; Baron, M.; Siri, D.; Gaudel-Siri, A.; Quinebeche, S.; Flat, J.; Gigmes, D.; Cassagnau, P.; Beyou, E.; Guillaneuf, Y. Acyloxyimide derivatives as efficient promoters of polyolefin C-H functionalization: application in the melt grafting of maleic anhydride onto polyethylene. Polym. Chem. 2019, 10, 4336–4345.

    Article  CAS  Google Scholar 

  19. Hong, M.; Liu, S. R.; Li, B. X.; Li, Y. S. Application of thiol-ene click chemistry to preparation of functional polyethylene with high molecular weight and high polar group content: influence of thiol structure and vinyl type on reactivity. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2499–2506.

    Article  CAS  Google Scholar 

  20. Hu, H.; You, J.; Gan, W. P.; Zhou, J. P.; Zhang, L. Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol-ene click reactions. Polym. Chem. 2015, 6, 3543–3548.

    Article  CAS  Google Scholar 

  21. Song, W. Q.; Liu, Y. Y.; Qian, L. W.; Niu, L. Y.; Xiao, L. Q.; Hou, Y.; Wang, Y.; Fan, X. D. Hyperbranched polymeric ionic liquid with imidazolium backbones for highly efficient removal of anionic dyes. Chem. Eng. J. 2015, 287, 482–491.

    Article  CAS  Google Scholar 

  22. Tyson, E. L.; Ament, M. S.; Yoon, T. P. Transition metal photoredox catalysis of radical thiol-ene reactions. J. Org. Chem. 2013, 78, 2046–2050.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, J. T.; Boyer, C. Visible light photocatalytic thiol-ene reaction: an elegant approach for fast polymer postfunctionalization and step-growth polymerization. Macromolecules, 2015, 48, 520–529.

    Article  CAS  Google Scholar 

  24. Zhu, X. Z.; Fan, X. D.; Zhao, N.; Liu, J.; Min, X.; Wang, Z. Z. Comparative study of structures and properties of HTPBs synthesized via three different polymerization methods. Polym. Test. 2018, 68, 201–207.

    Article  CAS  Google Scholar 

  25. Wang, H. T.; Bethea, T. W.; Harwood, H. J. Carbon-13 NMR spectra of isomerized polybutadienes. Macromolecules 1993, 26, 715–720.

    Article  CAS  Google Scholar 

  26. Wen, J. Q.; Zhang, X. Q.; Dai, Q. Q. Synthesis of polybutadienes with controllable microstructure by a novel binary Nd(3-NBSO3)3/alkylaluminum catalyst system. Chinese J. Polym. Sci. 2015, 33, 475–480.

    Article  CAS  Google Scholar 

  27. Silverstein, J. S.; Casey, B. J.; Natoli, M. E.; Dair, B. J.; Kofinas, P. Rapid modular synthesis and processing of thiol-ene functionalized styrene-butadiene block copolymers. Macromolecules 2012, 45, 3161–3167.

    Article  CAS  Google Scholar 

  28. Brummelhuis, N. T.; Diehl, C.; Schlaad, H. Thiol-ene modification of 1,2-polybutadiene using UV light or sunlight. Macromolecules 2008, 41, 9946–9947.

    Article  CAS  Google Scholar 

  29. Zhang, W. B.; Zhang, G. H.; Du, L.; Zhang, C.; Li, L.; Zhu, J. F.; Pei, J.; Wu, J. Synthesis of hydroxyl-terminated polybutadiene bearing pendant carboxyl groups by combination of anionic polymerization and blue light photocatalytic thiol-ene reaction and its pH-triggered self-assemble behavior. React. Funct. Polym. 2018, 127, 161–167.

    Article  CAS  Google Scholar 

  30. Liu, D.; Jiang, P. P.; Nie, Z. X.; Wang, H. Y.; Dai, Z. D.; Deng, J. N.; Cao, Z. L. Synthesis of an efficient bio-based plasticizer derived from waste cooking oil and its performance testing in PVC. Polym. Test. 2020, 90, 106625.

    Article  CAS  Google Scholar 

  31. Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions. J. Org. Chem. 2014, 79, 1427–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Passaglia, E.; Coiai, S.; Ciardelli, F.; Galimberti, M.; Passaglia, E. Thiol-ene radical addition of L-cysteine derivatives to low molecular weight polybutadiene. Macromol. Chem. Phys. 2009, 210, 1471–1483.

    Article  CAS  Google Scholar 

  33. Zhang, W. B.; Fan, X. D.; Tian, W.; Chen, H.; Zhu, X. Z.; Zhang, H. T. Preparation of a P(THF-co-PO)-b-PB-b-P(THF-co-PO) triblock copolymer via cationic ring-opening polymerization and its use as a thermoset polymer. RSC Adv. 2015, 5, 66073–66081.

    Article  CAS  Google Scholar 

  34. Zhou, Q. Z.; Jie, S. Y.; Li, B. G. Preparation of hydroxyl-terminated polybutadiene with high cis-1,4 content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893.

    Article  CAS  Google Scholar 

  35. Forens, A.; Roos, K.; Dire, C.; Gadenne, B.; Carlotti, S. Anionic polymerization of butadiene using lithium/potassium multi-metallic systems: influence on polymerization control and polybutadiene microstructure. Chinese J. Polym. Sci. 2019, 38, 357–362.

    Article  CAS  Google Scholar 

  36. Gao, Y. Y.; Hu, F. Y.; Liu, J.; Wang, Z. Moecular dynamics simulation of the glass transition temperature of fullerene filled cis-1,4-polybutadiene nanocomposites. Chinese J. Polym. Sci. 2018, 36, 119–128.

    Article  CAS  Google Scholar 

  37. Zhang, Y.; Zhang, X. M.; Song, Y. C.; Wang, J. H. Enhanced performance of calcium-enriched coal ash for the removal of humic acids from aqueous solution. Fuel 2015, 141, 93–98.

    Article  CAS  Google Scholar 

  38. Huang, Y. W.; Yan, J. Y.; Peng, S. Y.; Tang, Z. L.; Tan, C. Y.; Ling, J. B.; Lin, W. J.; Lin, X. F.; Zu, X. H.; Yi, G. B. pH/Reduction dual-stimuli-responsive cross-linked micelles based on multi-functional amphiphilic star copolymer: synthesis and controlled anti-cancer drug release. Polymers 2020, 12, 82.

    Article  CAS  PubMed Central  Google Scholar 

  39. Pereira, V. A.; Fonseca, A. C.; Costa, C. S. M. F.; Ramalho, A.; Coelho, J. F. J.; Serra, A. C. End-capped biobased saturated polyesters as effective plasticizers for PVC. Polym. Test. 2020, 85, 106406.

    Article  CAS  Google Scholar 

  40. Sun, Z. H.; Choi, B.; Feng, A. C.; Moad, G.; Thang, S. H. Nonmigratory poly(vinyl chloride)-block-polycaprolactone plasticizers and compatibilizers prepared by sequential RAFT and ring-opening polymerization (RAFT-T-ROP). Macromolecules 2019, 52, 1746–1756.

    Article  CAS  Google Scholar 

  41. Chen, J.; Wang, Y. G.; Huang, J. R.; Li, K.; Nie, X. A. Synthesis of tung-oil-based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Sustain. Chem. Eng. 2018, 6, 642–651.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51803111, 31670596 and 11904220), and the Natural Science Foundation of Shaanxi province (Nos. 2019JQ-786 and 2020GY-232).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Bin Zhang or Guang-Hua Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WB., Luo, J., Wang, YM. et al. Hydroxyl-terminated Polyethylenes Bearing Functional Side Groups: Facile Synthesis and Their Properties. Chin J Polym Sci 39, 994–1003 (2021). https://doi.org/10.1007/s10118-021-2572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2572-5

Keywords

Navigation