Skip to main content
Log in

Benzosuberyl Substituents as a “Sandwich-like” Function in Olefin Polymerization Catalysis

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

For the rational design of metal catalyst in olefin polymerization catalysis, various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center, among which the “sandwich” type turned out to be an efficient category in achieving high molecular weight polyolefin. In the α-diimine system, the “sandwich” type catalysts were built using the typical 8-aryl-naphthyl framework. In this contribution, by introducing the rotationally restrained benzosuberyl substituent into the ortho-position of N-aryl rings, a new class of “sandwich-like” α-diimine nickel catalysts was constructed and fully identified. The rotationally restrained benzosuberyl substituents played a “sandwich-like” function by capping the nickel center from two axial sites. Compared to the nickel catalyst Ni1 bearing freely rotated benzhydryl substituent, Ni2 featuring benzosuberyl substituent enabled the increase (8 times) of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene. By further increasing the steric bulk of another ortho-site of the N-aryl ring, the polymer molecular weight even reached an ultrahigh level of 833 kDa (Mw=1857 kDa) using the optimized Ni3. Notably, these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate, with Ni3 giving the highest copolymer molecular weight (88 kDa) and the highest incorporation of comonmer (2.0 mol%), along with high activity of up to 105 g·mol−1·h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F.; Chen, C. A Continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem. 2019, 10, 2354–2369.

    Article  CAS  Google Scholar 

  2. Chen, Z.; Brookhart, M. Exploring ethylene/polar vinyl monomer copolymerizations using Ni and Pd α-diimine catalysts. Acc. Chem. Res. 2018, 51, 1831–1839.

    Article  CAS  PubMed  Google Scholar 

  3. Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016, 6, 428–441.

    Article  CAS  Google Scholar 

  4. Camacho, D. H.; Guan, Z. Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization. Chem. Commun. 2010, 46, 7879–7893.

    Article  CAS  Google Scholar 

  5. Ittel, S. D.; Johnson, L. K; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev. 2000, 100, 1169–1203.

    Article  CAS  PubMed  Google Scholar 

  6. Dai, S.; Li, S.; Xu, G.; Wu, C.; Liao, Y.; Guo, L. Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species. Polym. Chem. 2020, 11, 1393–1400.

    Article  CAS  Google Scholar 

  7. Xia, J.; Zhang, Y.; Kou, S.; Jian, Z. A Concerted double-layer steric strategy enables an ultra-highly active nickel catalyst to access ultrahigh molecular weight polyethylenes. J. Catal. 2020, 390, 30–36.

    Article  CAS  Google Scholar 

  8. Hu, X.; Wang C.; Jian, Z. Comprehensive studies of the ligand electronic effect on unsymmetrical α-diimine nickel(II) promoted ethylene (co)polymerizations. Polym. Chem. 2020, 11, 4005–4012.

    Article  CAS  Google Scholar 

  9. Popeney, C. S.; Rheningold, A. L.; Guan, Z. Nickel(II) and palladium(II) polymerization catalysts bearing a fluorinated cyclophane ligand stabilization of the reactive intermediate. Organometallics 2009, 28, 4452–4463.

    Article  CAS  Google Scholar 

  10. Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. Angew. Chem. Int. Ed. 2004, 43, 1821–1825.

    Article  CAS  Google Scholar 

  11. Hu, X.; Zhang, Y.; Zhang, Y.; Jian, Z. Unsymmetrical strategy makes significant differences in α-diimine nickel and palladium catalyzed ethylene (co)polymerizations. ChemCatChem 2020, 12, 2497–2505.

    Article  CAS  Google Scholar 

  12. Li, S.; Dai, S. 8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems. Polym. Chem. 2020, 11, 7199–7206.

    Article  CAS  Google Scholar 

  13. Zhong, L.; Zheng, H.; Du, C.; Du, W.; Liao, G.; Cheung, C. S.; Gao, H. Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations. J. Catal. 2020, 384, 208–217.

    Article  CAS  Google Scholar 

  14. Guo, L.; Sun, W.; Li, S.; Xu, G.; Dai, S. Bulky yet flexible substituents in insertion polymerization with α-diimine nickel and palladium systems. Polym. Chem. 2019, 10, 4866–4871.

    Article  CAS  Google Scholar 

  15. Zhong, L.; Du, C.; Liao, G.; Liao, H.; Zheng, H.; Wu, Q.; Gao, H. Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with α-diimine nickel catalysts. J. Catal. 2019, 375, 113–123.

    Article  CAS  Google Scholar 

  16. Fang, J.; Sui, S.; Li, Y.; Chen, C. Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem. 2018, 9, 4143–4149.

    Article  CAS  Google Scholar 

  17. Li, M.; Wang, X.; Luo, Y.; Chen, C. A second-coordination-sphere strategy to modulate nickel- and palladium-catalyzed olefin polymerization and copolymerization. Angew. Chem. Int. Ed. 2017, 56, 11604–11609.

    Article  CAS  Google Scholar 

  18. Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules 2017, 50, 2675–2682.

    Article  CAS  Google Scholar 

  19. Mahmood, Q.; Zeng, Y.; Yue, E.; Solan, G. A.; Liang, T.; Sun, W. H. Ultra-high molecular weight elastomeric polyethylene using an electronically and sterically enhanced nickel catalyst. Polym. Chem. 2017, 8, 6416–6430.

    Article  CAS  Google Scholar 

  20. Long, B. K.; Eagan, J. M.; Mulzer, M.; Coates, G. W. Semi-crystalline polar polyethylene: ester-functionalized linear polyolefins enabled by a functional-group-tolerant, cationic nickel catalyst. Angew. Chem. Int. Ed. 2016, 55, 7106–7110.

    Article  CAS  Google Scholar 

  21. Muhammad, Q.; Tan, C.; Chen, C. Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Sci. Bull. 2020, 65, 300–307.

    Article  CAS  Google Scholar 

  22. Guo, L.; Dai, S.; Chen, C. Investigations of the ligand electronic effects on α-diimine nickel(II) catalyzed ethylene polymerization. Polymers 2016, 8, 37.

    Article  PubMed Central  CAS  Google Scholar 

  23. Rhinehart, J. L.; Mitchell, N. E.; Long, B. K. Enhancing α-diimine catalysts for high-temperature ethylene polymerization. ACS Catal. 2014, 4, 2501–2504.

    Article  CAS  Google Scholar 

  24. Rhinehart, J. L.; Brown, L. A.; Long, B. K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316–16319.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, L.; Lian, K.; Kong, W.; Xu, S.; Jiang, G.; Dai, S. Synthesis of various branched ultra-high-molecular-weight polyethylenes using sterically hindered acenaphthene-base α-diimine Ni(II) catalysts. Organometallics 2018, 37, 2442–2449.

    Article  CAS  Google Scholar 

  26. Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules 2009, 42, 7789–7796.

    Article  CAS  Google Scholar 

  27. Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, B. New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design. J. Am. Chem. Soc. 2007, 129, 9182–9191.

    Article  CAS  PubMed  Google Scholar 

  28. Ionkin, A. S.; Marshall, W. J. Ortho-5-methylfuran- and benzofuran-substituted η3-allyl(α-diimine)nickel(II) complexes: syntheses, structural characterization, and the first polymerization results. Organometallics 2004, 23, 3276–3283.

    Article  CAS  Google Scholar 

  29. Schmid, M.; Eberhardt, R.; Klinga, M.; Leskelä, M.; Rieger, B. New C2v- and chiral C2-symmetric olefin polymerization catalysts based on nickel(II) and palladium(II) diimine complexes bearing 2,6-diphenyl aniline moieties: synthesis, structural characterization, and first insight into polymerization properties. Organometallics 2001, 20, 2321–2330.

    Article  CAS  Google Scholar 

  30. Zheng, H.; Zhong, L.; Du, C.; Du, W.; Cheung, C. S.; Ruan, J.; Gao, H. Combining hydrogen bonding interactions with steric and electronic modifications for thermally robust α-diimine palladium catalysts toward ethylene (co)polymerization. Catal. Sci. Technol. 2021, 11, 124–135.

    Article  CAS  Google Scholar 

  31. Dall’Anese, A.; Rosar, V.; Cusin, L.; Montini, T.; Balducci, G.; D’Auria, I.; Pellecchia, C.; Fornasiero, P.; Felluga, F.; Milani, B. Palladium-catalyzed ethylene/methyl acrylate copolymerization: moving from the acenaphthene to the phenanthrene skeleton of α-diimine ligands. Organometallics 2019, 38, 3498–3511.

    Article  CAS  Google Scholar 

  32. Rosar, V.; Montini, T.; Balducci, G.; Zangrando, E.; Fornasiero, P.; Milani, B. Palladium-catalyzed ethylene/methyl acrylate co-oligomerization: the effect of a new nonsymmetrical α-diimine with the 1,4-diazabutadiene skeleton. ChemCatChem 2017, 9, 3402–3411.

    Article  CAS  Google Scholar 

  33. Takano, S.; Takeuchi, D.; Osakada, K.; Akamatsu, N.; Shishido, A. Dipalladium catalyst for olefin polymerization: introduction of acrylate units into the main chain of branched polyethylene. Angew. Chem. Int. Ed. 2014, 53, 9246–9250.

    Article  CAS  Google Scholar 

  34. Johnson, L. K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc. 1996, 118, 267–268.

    Article  CAS  Google Scholar 

  35. Johnson, L. K.; Killian, C. M.; Brookhart, M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415.

    Article  CAS  Google Scholar 

  36. Mu, H. L.; Ye, J. H.; Zhou, G. L.; Li, K. K.; Jian, Z. B. Ethylene polymerization and copolymerization with polar monomers by benzothiophene-bridged BPMO-Pd catalysts. Chinese J. Polym. Sci. 2020, 38, 579–586.

    Article  CAS  Google Scholar 

  37. Tan, C.; Pang, W. M.; Chen, C. L. A phenol-containing α-diimine ligand for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci. 2019, 37, 974–980.

    Article  CAS  Google Scholar 

  38. Wang, F.; Tian, S.; Li, R.; Li, W.; Chen, C. Ligand steric effects on naphthyl-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci. 2018, 36, 157–162.

    Article  CAS  Google Scholar 

  39. Liao, H.; Gao, J.; Zhong, L.; Gao, H. Y.; Wu, Q. Regioselective polymerizations of α-olefins with an α-diamine nickel catalyst. Chinese J. Polym. Sci. 2019, 37, 959–965.

    Article  CAS  Google Scholar 

  40. Gao, H.; Liu, F.; Hu, H.; Zhu, F.; Wu, Q. Synthesis of bimodal polyethylene with unsymmetrical-diimine nickel complexes: influence of ligand backbone and unsym-substituted aniline moiety. Chinese J. Polym. Sci 2013, 31, 563–573.

    Article  CAS  Google Scholar 

  41. Zeng, Y. N.; Xing, Q. F.; Ma, Y. P.; Sun, W. H. Dinuclear nickel(II) chlorides bearing N, N′-bis(5,6,7-trihydroquinolin-8-ylidene)-[1,1′-biphenyl]-4,4′-diamines: synthesis and ethylene polymerization. Chinese J. Polym. Sci. 2018, 36, 207–213.

    Article  CAS  Google Scholar 

  42. Zhang, Y.; Wang, C.; Mecking, S.; Jian, Z. Ultrahigh branching of main-chain-functionalized polyethylenes by inverted insertion selectivity. Angew. Chem. Int. Ed. 2020, 59, 14296–14302.

    Article  CAS  Google Scholar 

  43. Kanai, Y.; Foro, S.; Plenio, H. Bispentiptycenyl-diimine-nickel complexes for ethene polymerization and copolymerization with polar monomers. Organometallics 2019, 38, 544–551.

    Article  CAS  Google Scholar 

  44. Liao, Y.; Zhang, Y.; Cui, L.; Mu, H.; Jian, Z. Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species. Organometallics 2019, 38, 2075–2083.

    Article  CAS  Google Scholar 

  45. Zhang, Y.; Wang, C.; Jian, Z. A comprehensive study on highly active pentiptycenyl-substituted bis(imino)pyridyl iron(II) mediated ethylene polymerization. Eur. Polym. J. 2020, 128, 109605.

    Article  CAS  Google Scholar 

  46. Wang, C.; Zhang, Y.; Mu, H.; Jian, Z. Systematic studies on dibenzhydryl and pentiptycenyl substituted pyridine-imine nickel(II) mediated ethylene polymerization. Dalton Trans. 2020, 49, 4824–4833.

    Article  CAS  PubMed  Google Scholar 

  47. Padilla-Vélez, O.; O’Connor, K. S.; LaPointe, A. M.; MacMillan, S. N.; Coates, G. W. Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation. Chem. Commun. 2019, 55, 7607–7610.

    Article  Google Scholar 

  48. Chen, Z.; Liu, W.; Daugulis, O.; Brookhart, M. Mechanistic Studies of Pd(II)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: evidence for a β-silyl elimination chain transfer mechanism. J. Am. Chem. Soc. 2016, 138, 16120–16129.

    Article  CAS  PubMed  Google Scholar 

  49. O’Connor, K. S.; Watts, A.; Vaidya, T.; LaPointe, A. M.; Hillmyer, M. A.; Coates, G. W. Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: synthesis, structure, and properties. Macromolecules 2016, 49, 6743–6751.

    Article  CAS  Google Scholar 

  50. Allen, K. E.; Campos, J.; Daugulis, O.; Brookhart, M. Living polymerization of ethylene and copolymerization of ethylene/methyl acrylate using “sandwich” diimine palladium catalysts. ACS Catal. 2015, 5, 456–464.

    Article  CAS  Google Scholar 

  51. Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O. Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics 2013, 32, 5136–5143.

    Article  CAS  Google Scholar 

  52. Tran, Q. H.; Brookhart, M.; Daugulis, O. New neutral nickel and palladium sandwich catalysts: synthesis of ultra-high molecular weight polyethylene (UHMWPE) via highly controlled polymerization and mechanistic studies of chain propagation. J. Am. Chem. Soc. 2020, 142, 7198–7206.

    Article  CAS  PubMed  Google Scholar 

  53. Kenyon, P.; Wörner, M.; Mecking, S. Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene. J. Am. Chem. Soc. 2018, 140, 6685–6689.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, Z.; Mesgar, M.; White, P. S.; Daugulis, O.; Brookhart, M. Synthesis of branched ultrahigh-molecular-weight polyethylene using highly active neutral, single-component Ni(II) catalysts. ACS Catal. 2015, 5, 631–636.

    Article  CAS  Google Scholar 

  55. Schnitte, M.; Scholliers, J. S.; Riedmiller, K.; Mecking, S. Remote perfluoroalkyl substituents are key to living aqueous ethylene polymerization. Angew. Chem. Int. Ed. 2020, 59, 3258–3263.

    Article  CAS  Google Scholar 

  56. Schnitte, M.; Staiger, A.; Casper, L. A.; Mecking, S. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat. Commun. 2019, 10, 2592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang, C.; Kang, X.; Dai, S.; Cui, F.; Li, Y.; Mu, H.; Mecking, S.; Jian, Z. Efficient suppression of chain transfer and branching via Cs-type shielding in a neutral nickel(II) catalyst. Angew. Chem. Int. Ed. 2021, 60, 4018–4022.

    Article  CAS  Google Scholar 

  58. Li, S.; Dai, S. Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system. J. Catal. 2021, 393, 51–59.

    Article  CAS  Google Scholar 

  59. Peng, H.; Li, S.; Li, G.; Dai, S.; Ji, M.; Liu, Z.; Guo, L. Rotation-restricted strategy to synthesize high molecular weight polyethylene using iminopyridyl nickel and palladium catalyst. Appl. Organometal. Chem. 2021, 35, e6140.

    Article  CAS  Google Scholar 

  60. SMART, version 5.054, Bruker AXS Inc., Madison, WI, 2000.

  61. SAINT and SADABS, version 6.22, Bruker AXS Inc., Madison, WI, 2000.

  62. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    Google Scholar 

  63. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  64. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.

    Google Scholar 

  65. Batsanov, S. S. van der Waals radii of elements. Inorg. Mater. 2001, 37, 871–885.

    Article  CAS  Google Scholar 

  66. Zou, H.; Hu, S.; Huang, H.; Zhu, F.; Wu, Q. Synthesis of bimodal molecular weight distribution polyethylene with α-diimine nickel(II) complexes containing unsym-substituted aryl groups in the presence of methylaluminoxane. Eur. Polym. J. 2007, 43, 3882–3891.

    Article  CAS  Google Scholar 

  67. Sui, X.; Hong, C.; Pang, W.; Chen, C. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization. Mater. Chem. Front. 2017, 1, 967–972.

    Article  CAS  Google Scholar 

  68. Zhai, F; Jordan, R. F. (α-Diimine)nickel Complexes that contain menthyl substituents: synthesis, conformational behavior, and olefin polymerization catalysis. Organometallics 2017, 36, 2784–2799.

    Article  CAS  Google Scholar 

  69. Ma, X.; Hu, X.; Zhang, Y.; Mu, H.; Cui, L.; Jian, Z. Preparation and in situ chain-end-functionalization of branched ethylene oligomers by monosubstituted α-diimine nickel catalysts. Polym. Chem. 2019, 10, 2596–2607.

    Article  CAS  Google Scholar 

  70. Wiedemann, T.; Voit, G.; Tchernook, A.; Roesle, P.; Gottker-Schnetmann, I.; Mecking, S. Monofunctional hyperbranched ethylene oligomers. J. Am. Chem. Soc. 2014, 136, 2078–2085.

    Article  CAS  PubMed  Google Scholar 

  71. D’Auria, I.; Milione, S.; Caruso, T.; Balducci, G.; Pellecchia, C. Synthesis of hyperbranched low molecular weight polyethylene oils by an iminopyridine nickel(II) catalyst. Polym. Chem. 2017, 8, 6443–6454.

    Article  Google Scholar 

  72. Li, S.; Xu, G.; Dai, S. A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species. Polym. Chem. 2020, 11, 2692–2699.

    Article  CAS  Google Scholar 

  73. Lebarbé, T.; Maisonneuve, L.; Nga Nguyen, T. H.; Gadenne, B.; Alfos, C.; Cramail, H. Methyl 10-undecenoate as a raw material for the synthesis of renewable semi-crystalline polyesters and poly(ester-amide)s. Polym. Chem. 2012, 3, 2842–2851.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank financial support from the National Natural Science Foundation of China (Nos. 21871250 and 22001244) and the Jilin Provincial Science and Technology Department Program (No. 20200801009GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Chi, Yi-Xin Zhang or Zhong-Bao Jian.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Wang, CQ., Hu, XQ. et al. Benzosuberyl Substituents as a “Sandwich-like” Function in Olefin Polymerization Catalysis. Chin J Polym Sci 39, 984–993 (2021). https://doi.org/10.1007/s10118-021-2562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2562-7

Keywords

Navigation