Skip to main content
Log in

Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization (RDRP), emphasizing reverse addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide mediated polymerization (NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug. Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. Y.; Jiao, K.; Yan, J. F.; Wan, M.C.; Wan, Q. Q.; Breschi, L.; Chen, J. H.; Tay, F. R.; Niu, L. N. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Prog. Mater. Sci. 2020, 100, 100712.

    Google Scholar 

  2. Maghsoudi, S.; Shahraki, B. T.; Rabiee, N.; Afshari, R.; Fatahi, Y.; Dinarvand, R.; Ahmadi, S.; Bagherzadeh, M.; Rabiee, M.; Tayebi, L. Recent advancements in aptamer-bioconjugates: sharpening stones for breast and prostate cancers targeting. J. Drug. Deliv. Sci. Technol 2019, 53, 101146.

    Article  CAS  Google Scholar 

  3. Chen, C.; Ng, D. Y. W.; Weil, T. Polymer bioconjugates: modern design concepts toward precision hybrid materials. Prog. Polym. Sci. 2020, 100, 101241.

    Article  CAS  Google Scholar 

  4. Meng, F.; Hasan, A.; Babadaei, M. M. N.; Kani, P. H.; Talaei, A. J.; Sharifi, M.; Cai, T.; Falahati, M.; Cai, Y. Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems. J. Adv. Res. 2020.

  5. Paredes-Ramos, M.; Sabín-López, A.; Peña-García, J.; Pérez-Sánchez, H.; López-Vilariño, J.; de Vicente, M. S. Computational aided acetaminophen-phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs. J. Mol. Graph. Model. 2020, 107627.

  6. Kim, Y. M.; Lee, Y. S.; Kim, T.; Yang, K.; Nam, K.; Choe, D.; Roh, Y. H. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr. Polym. 2020, 247, 116684.

    Article  CAS  PubMed  Google Scholar 

  7. Messina, M. S.; Messina, K. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polym. Chem. 2020, 11, 1673–1690.

    Article  CAS  Google Scholar 

  9. Wei, W.; Zhang, X.; Zhang, S.; Wei, G.; Su, Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review. Mater. Sci. Eng. C. 2019, 104, 109891.

    Article  CAS  Google Scholar 

  10. Gong, C.; Sun, S.; Zhang, Y.; Sun, L.; Su, Z.; Wu, A.; Wei, G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019, 11, 4147–4182.

    Article  CAS  PubMed  Google Scholar 

  11. Glasing, J.; Champagne, P.; Cunningham, M. F. Graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP). Curr. Opin. Green Sust. 2016, 2, 15–21.

    Article  Google Scholar 

  12. Shipp, D. A. Reversible-deactivation radical polymerizations. Polym. Rev. 2011, 51, 99–103.

    Article  CAS  Google Scholar 

  13. Ghadban, A.; Albertin, L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers 2013, 5, 431–526.

    Article  CAS  Google Scholar 

  14. Webster, O. W. Living polymerization methods. Science 1991, 251, 887–893.

    Article  CAS  PubMed  Google Scholar 

  15. Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature. Macromolecules 1998, 31, 5958–5959.

    Article  CAS  Google Scholar 

  16. Xia, J.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules 1997, 30, 7697–7700.

    Article  CAS  Google Scholar 

  17. Matyjaszewski, K.; Gaynor, S.; Greszta, D.; Mardare, D.; Shigemoto, T. ‘Living’ and controlled radical polymerization. J. Org. Chem 1995, 8, 306–315.

    CAS  Google Scholar 

  18. Moad, G.; Anderson, A. G.; Ercole, F.; Johnson, C. H.; Krstina, J.; Moad, C. L.; Rizzardo, E.; Spurling, T. H.; Thang, S. H. Controlled-growth free-radical polymerization of methacrylate esters: reversible chain transfer versus reversible termination. ACS Symp. 1998, 685, 332–360.

    Article  CAS  Google Scholar 

  19. Wang, Y.; Fantin, M.; Park, S.; Gottlieb, E.; Fu, L.; Matyjaszewski, K. Electrochemically mediated reversible addition-fragmentation chain-transfer polymerization. Macromolecules 2017, 50, 7872–7879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81–84.

    Article  CAS  PubMed  Google Scholar 

  21. Fors, B. P.; Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. 2012, 124, 8980–8983.

    Article  Google Scholar 

  22. Tao, L.; Kaddis, C. S.; Loo, R. R. O.; Grover, G. N.; Loo, J. A.; Maynard, H. D. Synthetic approach to homodimeric proteinpolymer conjugates. Chem. Commun. 2009, 2148–2150.

  23. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 101311.

  24. Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 2018, 47, 4357–4387.

    Article  CAS  PubMed  Google Scholar 

  25. Chenal, M.; Boursier, C.; Guillaneuf, Y.; Taverna, M.; Couvreur, P.; Nicolas, J. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polym. Chem. 2011, 2, 1523–1530.

    Article  CAS  Google Scholar 

  26. He, P.; He, L. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition? fragmentation chain transfer polymerization. Biomacromolecules 2009, 10, 1804–1809.

    Article  CAS  PubMed  Google Scholar 

  27. Wilks, T. R.; Bath, J.; de Vries, J. W.; Raymond, J. E.; Herrmann, A.; Turberfield, A. J.; O’Reilly, R. K. “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer. ACS Nano 2013, 7, 8561–8572.

    Article  CAS  PubMed  Google Scholar 

  28. Averick, S.; Mehl, R. A.; Das, S. R.; Matyjaszewski, K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J. Control. Release 2015, 205, 45–57.

    Article  CAS  PubMed  Google Scholar 

  29. Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H.; Deng, J.; Lu, L.; Cai, Y. Ambient-temperature RAFT polymerization of styrene and its functional derivatives under mild long-wave UV-Vis radiation. Macromolecules 2007, 40, 9252–9261.

    Article  CAS  Google Scholar 

  31. Barner-Kowollik, C.; Perrier, S. The future of reversible addition fragmentation chain transfer polymerization. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5715–5723.

    Article  CAS  Google Scholar 

  32. Smith, A. E.; Xu, X.; McCormick, C. L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog. Polym. Sci. 2010, 35, 45–93.

    Article  CAS  Google Scholar 

  33. Lebreton, P.; Ameduri, B.; Boutevin, B.; Corpart, J. M. Use of original ω-perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT). Macromol. Chem. Phys. 2002, 203, 522–537.

    Article  CAS  Google Scholar 

  34. Sciannamea, V.; Jérôme, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108, 1104–1126.

    Article  CAS  PubMed  Google Scholar 

  35. Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc. Natl. Acad. Sci. 2006, 103, 7670–7675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guillaneuf, Y.; Gigmes, D.; Marque, S. R.; Tordo, P.; Bertin, D. Nitroxide-mediated polymerization of methyl methacrylate using an SG1-based alkoxyamine: how the penultimate effect could lead to uncontrolled and unliving polymerization. Macromol. Chem. Phys. 2006, 207, 1278–1288.

    Article  CAS  Google Scholar 

  37. Hong, S. C.; Pakula, T.; Matyjaszewski, K. Preparation of polyisobutene-graft-poly(methyl methacrylate) and polyisobutene-graft-polystyrene with different compositions and side chain architectures through atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 2001, 202, 3392–3402.

    Article  CAS  Google Scholar 

  38. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2002, 37, 18–37.

    Article  CAS  Google Scholar 

  39. Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 2005, 38, 7540–7545.

    Article  CAS  Google Scholar 

  40. Gao, H.; Matyjaszewski, K. Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators. Macromolecules 2007, 40, 399–401.

    Article  CAS  Google Scholar 

  41. Maguire, M.; Poole, S.; Coates, A. R.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology 2005, 115, 231–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hardy, C. G.; Zhang, J.; Yan, Y.; Ren, L.; Tang, C. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog. Polym. Sci. 2014, 39, 1742–1796.

    Article  CAS  Google Scholar 

  43. Buchmeiser, M. R.; Sinner, F.; Mupa, M.; Wurst, K. Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports. Macromolecules 2000, 33, 32–39.

    Article  CAS  Google Scholar 

  44. Isarov, S. A.; Pokorski, J. K. Protein ROMP: aqueous graft-from ring-opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969–973.

    Article  CAS  PubMed  Google Scholar 

  45. Héroguez, V.; Chemtob, A.; Quemener, D. ROMP in dispersed media. In Handbook of metathesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2005, 25–44.

  46. Jagur-Grodzinski, J. Functional polymers by living anionic polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2116–2133.

    Article  CAS  Google Scholar 

  47. Matsuoka, D.; Goseki, R.; Uchida, S.; Ishizone, T. Living anionic polymerization of 1-adamantyl 4-vinylphenyl ketone. Macromol. Chem. Phys. 2017, 218, 1700015.

    Article  CAS  Google Scholar 

  48. Haraguchi, R.; Nishikawa, T.; Kanazawa, A.; Aoshima, S. Metalfree living cationic polymerization using diaryliodonium salts as organic lewis acid catalysts. Macromolecules 2020, 53, 4185–4192.

    Article  CAS  Google Scholar 

  49. Aoshima, S.; Kanaoka, S. A Renaissance in living cationic polymerization. Chem. Rev. 2009, 109, 5245–5287.

    Article  CAS  PubMed  Google Scholar 

  50. Liu, D.; He, J.; Zhang, L.; Tan, J. 100th Anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities. ACS Macro Lett. 2019, 8, 1660–1669.

    Article  CAS  PubMed  Google Scholar 

  51. Torres-Rocha, O. L.; Wu, X.; Zhu, C.; Crudden, C. M.; Cunningham, M. F. Polymerization-induced self-assembly (PISA) of 1,5-cyclooctadiene using ring opening metathesis polymerization. Macromol. Rapid Commun. 2019, 40, 1800326.

    Article  CAS  Google Scholar 

  52. Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers. Macromolecules 2019, 52, 7468–7476.

    Article  CAS  Google Scholar 

  53. Tan, J.; Xu, Q.; Zhang, Y.; Huang, C.; Li, X.; He, J.; Zhang, L. Room temperature synthesis of self-assembled ab/b and abc/bc blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water. Macromolecules 2018, 51, 7396–7406.

    Article  CAS  Google Scholar 

  54. He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett. 2020, 9, 533–539.

    Article  CAS  PubMed  Google Scholar 

  55. Kedracki, D.; Maroni, P.; Schlaad, H.; Vebert-Nardin, C. Polymer-aptamer hybrid emulsion templating yields bioresponsive nanocapsules. Adv. Funct. Mater. 2014, 24, 1133–1139.

    Article  CAS  Google Scholar 

  56. Adhikary, P.; Tiwari, K.; Singh, R. Synthesis, characterization, and flocculation characteristics of polyacrylamide-grafted glycogen. J. Appl. Polym. Sci. 2007, 103, 773–778.

    Article  CAS  Google Scholar 

  57. Seaberg, J.; Kaabipour, S.; Hemmati, S.; Ramsey, J. D. A rapid millifluidic synthesis of tunable polymer-protein nanoparticles. Eur. J. Pharm. Biopharm. 2020, 154, 127–135.

    Article  CAS  PubMed  Google Scholar 

  58. Baldwin, A. D.; Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Peptide Sci. 2010, 94, 128–140.

    Article  CAS  Google Scholar 

  59. Fujita, M.; Shoda, S. I.; Kobayashi, S. Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J. Am. Chem. Soc. 1998, 120, 6411–6412.

    Article  CAS  Google Scholar 

  60. Vicent, M. J.; Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 2006, 24, 39–47.

    Article  CAS  PubMed  Google Scholar 

  61. Lutolf, M.; Hubbell, J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.

    Article  CAS  PubMed  Google Scholar 

  62. Lin, J.; Bao, Y. X.; Lam, W.; L, W. W.; Lu, F.; Zhu, X.; Liu, J.; Wang, H. P. Immunoregulatory and anti-tumor effects of polysaccharopeptide and astragalus polysaccharides on tumor-bearing mice. Immunopharm. Immunot. 2008, 30, 771–782.

    Article  CAS  Google Scholar 

  63. Miadoková, E.; Svidová, S.; Vlčková, V.; Kogan, G.; Rauko, P. The role of microbial polysaccharides in cancer prevention and therapy. J Cancer Integrative Med. 2004, 2, 1738.

    Google Scholar 

  64. Deeley, R. G.; Westlake, C.; Cole, S. P. Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 2006, 86, 849–899.

    Article  CAS  PubMed  Google Scholar 

  65. Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L. Q. A photosensitizer loaded hemoglobin-polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J. Mater. Chem. B 2018, 6, 1825–1833.

    Article  CAS  PubMed  Google Scholar 

  66. Makwana, H.; Mastrotto, F.; Magnusson, J. P.; Sleep, D.; Hay, J.; Nicholls, K. J.; Allen, S.; Alexander, C. Engineered polymer-transferrin conjugates as self-assembling targeted drug delivery systems. Biomacromolecules 2017, 18, 1532–1543.

    Article  CAS  PubMed  Google Scholar 

  67. Duro-Castano, A.; Lim, N. H.; Tranchant, I.; Amoura, M.; Beau, F.; Wieland, H.; Kingler, O.; Herrmann, M.; Nazaré, M.; Plettenburg, O. In vivo imaging of MMP-13 activity using a specific polymer-FRET peptide conjugate detects early osteoarthritis and inhibitor efficacy. Adv. Funct. Mater. 2018, 28, 1802738.

    Article  CAS  Google Scholar 

  68. Gao, D.; Zhang, P.; Liu, Y.; Sheng, Z.; Chen, H.; Yuan, Z. Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale 2018, 10, 19742–19748.

    Article  CAS  PubMed  Google Scholar 

  69. Faust, H. J.; Sommerfeld, S. D.; Rathod, S.; Rittenbach, A.; Banerjee, S. R.; Tsui, B. M.; Pomper, M.; Amzel, M. L.; Singh, A.; Elisseeff, J. H. A hyaluronic acid binding peptide-polymer system for treating osteoarthritis. Biomaterials 2018, 183, 93–101.

    Article  CAS  PubMed  Google Scholar 

  70. Bao, X.; Fan, X.; Yu, Y.; Wang, Q.; Wang, P.; Yuan, J. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling. Int. J. Biol. Macromol. 2020, 144, 267–278.

    Article  CAS  PubMed  Google Scholar 

  71. Ramirez, L. M. F.; Babin, J.; Boudier, A.; Gaucher, C.; Schmutz, M.; Er-Rafik, M.; Durand, A.; Six, J. L.; Nouvel, C. First multi-reactive polysaccharide-based transurf to produce potentially biocompatible dextran-covered nanocapsules. Carbohydr. Polym. 2019, 224, 115153.

    Article  CAS  Google Scholar 

  72. Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Grafting from starch nanoparticles with synthetic polymers via nitroxide-mediated polymerization. Macromol. Rapid Commun. 2019, 40, 1800834.

    Article  CAS  Google Scholar 

  73. Song, W.; Xiao, C.; Cui, L.; Tang, Z.; Zhuang, X.; Chen, X. Facile construction of functional biosurface via SI-ATRP and “click glycosylation”. Colloids Surf. B 2012, 93, 188–194.

    Article  CAS  Google Scholar 

  74. Rowland, G.; O’neill, G.; Davies, D. Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage. Nature 1975, 255, 487–488.

    Article  CAS  PubMed  Google Scholar 

  75. Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach. Carbohydr. Polym. 2020, 228, 115384.

    Article  PubMed  CAS  Google Scholar 

  76. Porter, C. J.; Werber, J. R.; Ritt, C. L.; Guan, Y. F.; Zhong, M.; Elimelech, M. Controlled grafting of polymer brush layers from porous cellulosic membranes. J. Membr. Sci. 2020, 596, 117719.

    Article  CAS  Google Scholar 

  77. Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411, 59–62.

    Article  CAS  PubMed  Google Scholar 

  78. Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444.

    Article  CAS  Google Scholar 

  79. Zhang, L.; Beatty, A.; Lu, L.; Abdalrahman, A.; Makris, T.; Wang, G.; Wang, Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Mater. Sci. Eng. C 2020, 110768.

  80. Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization. Biomacromolecules 2015, 16, 2040–2048.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson, J. A.; Finn, M.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun. 2008, 29, 1052–1072.

    Article  CAS  Google Scholar 

  82. Meldal, M.; Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015.

    Article  CAS  PubMed  Google Scholar 

  83. Lutz, J. F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv. Drug. Deliv. Rev. 2008, 60, 958–970.

    Article  CAS  PubMed  Google Scholar 

  84. Bao, H.; Li, L.; Gan, L. H.; Ping, Y.; Li, J.; Ravi, P. Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 2010, 43, 5679–5687.

    Article  CAS  Google Scholar 

  85. Zhang, K.; Zhuang, P.; Wang, Z.; Li, Y.; Jiang, Z.; Hu, Q.; Liu, M.; Zhao, Q. One-pot synthesis of chitosan-g-(PEO-PLLA-PEO) via “click” chemistry and “SET-NRC” reaction. Carbohydr. Polym. 2012, 90, 1515–1521.

    Article  CAS  PubMed  Google Scholar 

  86. Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 2016, 49, 1985–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Karagoz, B.; Esser, L.; Duong, H. T.; Basuki, J. S.; Boyer, C.; Davis, T. P. Polymerization-induced self-assembly (PISA)-control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 2014, 5, 350–355.

    Article  CAS  Google Scholar 

  88. Dao, T. T.; Vezenkov, L.; Subra, G.; Amblard, M.; In, M.; Le Meins, J. F. O.; Aubrit, F.; Moradi, M. A.; Ladmiral, V.; Semsarilar, M. Self-assembling peptide-polymer nano-objects via polymerization-induced self-assembly. Macromolecules 2020, 53, 7034–7043.

    Article  CAS  Google Scholar 

  89. Tsao, C.; Zhang, P.; Yuan, Z.; Dong, D.; Wu, K.; Niu, L.; McMullen, P.; Luozhong, S.; Hung, H. C.; Cheng, Y. H. Zwitterionic polymer conjugated glucagon-like peptide-1 for prolonged glycemic control. Bioconjug. Chem. 2020, 31, 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  90. Crooke, S. N.; Zheng, J.; Ganewatta, M. S.; Guldberg, S. M.; Reineke, T. M.; Finn, M. Immunological properties of protein-polymer nanoparticles. ACS Appl. Biomater. 2018, 2, 93–103.

    Article  CAS  Google Scholar 

  91. Nandi, S.; Kundu, A.; Das, P.; Nandi, A. K. Facile synthesis of water soluble, fluorescent DNA-polymer conjugate via enzymatic polymerization for cell imaging. J. Nanosci. Nanotechnol. 2017, 17, 5168–5174.

    Article  CAS  Google Scholar 

  92. Lueckerath, T.; Strauch, T.; Koynov, K.; Barner-Kowollik, C.; Ng, D. Y.; Weil, T. DNA-polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules 2018, 20, 212–221.

    Article  PubMed  CAS  Google Scholar 

  93. Noteborn, W. E.; Wondergem, J. A.; Iurchenko, A.; Chariyev-Prinz, F.; Donato, D.; Voets, I. K.; Heinrich, D.; Kieltyka, R. E. Grafting from a hybrid DNA-covalent polymer by the hybridization chain reaction. Macromolecules 2018, 51, 5157–5164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hadinoto, K.; Sundaresan, A.; Cheow, W. S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 2013, 85, 427–443.

    Article  CAS  PubMed  Google Scholar 

  95. Wong, H. L.; Bendayan, R.; Rauth, A. M.; Xue, H. Y.; Babakhanian, K.; Wu, X. Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 2006, 317, 1372–1381.

    Article  CAS  PubMed  Google Scholar 

  96. Woodle, M. C.; Newman, M. S.; Cohen, J. A. Sterically stabilized liposomes: physical and biological properties. J. Drug. Target. 1994, 2, 397–403.

    Article  CAS  PubMed  Google Scholar 

  97. Tomaás, R. M.; Gibson, M. I. Optimization and stability of cell-polymer hybrids obtained by “clicking” synthetic polymers to metabolically labeled cell surface glycans. Biomacromolecules 2019, 20, 2726–2736.

    Article  CAS  Google Scholar 

  98. Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754–2794.

    Article  Google Scholar 

  99. Zhou, C.; Reesink, H. L.; Putnam, D. A. Selective and tunable galectin binding of glycopolymers synthesized by a generalizable conjugation method. Biomacromolecules 2019, 20, 3704–3712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X. Self-assembled aptamer-grafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery. Angew. Chem. 2018, 130, 17294–17298.

    Article  Google Scholar 

  101. Mansur, A.; Mansur, H.; González, J. Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors 2011, 11, 9951–9972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y.; Nevanen, T. K.; Paananen, A.; Kempe, K.; Wilson, P.; Johansson, L. S.; Joensuu, J. J.; Linder, M. B.; Haddleton, D. M.; Milani, R. Self-assembling protein-polymer bioconjugates for surfaces with antifouling features and low nonspecific binding. ACS Appl. Mater. Interfaces 2018, 11, 3599–3608.

    Article  CAS  Google Scholar 

  103. Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta. Pharm. Sin. B 2016, 6, 287–296.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mathiowitz, E.; Saltzman, W.; Domb, A.; Dor, P.; Langer, R. Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal. J. Appl. Polym. Sci. 1988, 35, 755–774.

    Article  CAS  Google Scholar 

  105. Hawkins, M. J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug. Deliv. Rev. 2008, 60, 876–885.

    Article  CAS  PubMed  Google Scholar 

  106. Wahajuddin, S. A. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012, 7, 3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, J.; Ma, Y. J.; Wang, Y.; Chen, B. Z.; Guo, X. D.; Zhang, C. Y. Dual redox/pH-responsive hybrid polymer-lipid composites: synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem. Eng. J. 2018, 341, 450–461.

    Article  CAS  Google Scholar 

  108. Jiang, P.; Jacobs, K. M.; Ohr, M. P.; Swindle-Reilly, K. E. Chitosan-polycaprolactone core-shell microparticles for sustained delivery of bevacizumab. Mol. Pharmaceut. 2020, 17, 2570–2584.

    Article  CAS  Google Scholar 

  109. Suh, J. K. F.; Matthew, H. W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000, 21, 2589–2598.

    Article  CAS  PubMed  Google Scholar 

  110. Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184–198.

    Article  CAS  PubMed  Google Scholar 

  111. Solchaga, L. A.; Dennis, J. E.; Goldberg, V. M.; Caplan, A. I. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 1999, 17, 205–213.

    Article  CAS  PubMed  Google Scholar 

  112. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543.

    Article  CAS  PubMed  Google Scholar 

  113. Ohgushi, H., Tissue engineering using bioceramics. In Bioceramics and their Clinical Applications, Woodhead Publishing 2008, 718–736.

  114. Mishra, R.; Varshney, R.; Das, N.; Sircar, D.; Roy, P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 2019, 119, 155–168.

    Article  CAS  Google Scholar 

  115. Kim, S. H.; Thambi, T.; Phan, V. G.; Lee, D. S. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydr. Polym. 2020, 233, 115832.

    Article  CAS  PubMed  Google Scholar 

  116. Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B 2019, 178, 222–229.

    Article  CAS  Google Scholar 

  117. Nelson, R. W.; Nedelkov, D.; Tubbs, K. A. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 2000, 21, 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  118. Cornell, B. A.; Braach-Maksvytis, V.; King, L.; Osman, P.; Raguse, B.; Wieczorek, L.; Pace, R. A biosensor that uses ion-channel switches. Nature 1997, 387, 580–583.

    Article  CAS  PubMed  Google Scholar 

  119. Pandey, C. M.; Malhotra, B. D. Biosensors: fundamentals and applications. Walter de Gruyter GmbH & Co KG: 2019.

  120. Gu, T.; Zhang, Y.; Deng, F.; Zhang, J.; Hasebe, Y. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film. J. Environ. Sci. 2011, 23, S66–S69.

    Article  Google Scholar 

  121. Yoo, E. H.; Lee, S. Y. Glucose biosensors: an overview of use in clinical practice. Sensors 2010, 10, 4558–4576.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yang, Y.; Nam, S.; Lee, W. Y. Tris(2,2′-bipyridyl) ruthenium(II) electrogenerated chemiluminescence ethanol biosensor based on ionic liquid doped titania-Nafion composite film. Microchem. J. 2018, 142, 62–69.

    Article  CAS  Google Scholar 

  123. Paloni, J. M.; Olsen, B. D. Polymer domains control diffusion in protein-polymer conjugate biosensors. ACS Appl. Polym. Mater. 2020, 14, 4481–4492.

    Article  CAS  Google Scholar 

  124. Paloni, J. M.; Dong, X. H.; Olsen, B. D. Protein-polymer block copolymer thin films for highly sensitive detection of small proteins in biological fluids. ACS Sensors 2019, 4, 2869–2878.

    Article  CAS  PubMed  Google Scholar 

  125. Qi, F.; Qian, Y.; Shao, N.; Zhou, R.; Zhang, S.; Lu, Z.; Zhou, M.; Xie, J.; Wei, T.; Yu, Q. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interface 2019, 11, 18907–18913.

    Article  CAS  Google Scholar 

  126. Nishimura, T.; Shishi, S.; Sasaki, Y.; Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 2019, 142, 154–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ZQS acknowledges the financial supports from the National Natural Science Foundation of China (NSFC, No. 51873016), the Fundamental Research Funds for the Central Universities (No. JD2014), and the Joint Project of BRC-BC (Biomedical Translational Engineering Research Center of BUCT-CJFH) (No. XK2020-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yuan Zhang or Zhi-Qiang Su.

Additional information

Biographies

Xiao-Yuan Zhang received her M.Sc. in polymer materials and engineering from Beijing University of Chemical Technology, China, in 2013. She completed her Ph.D. candidate in Jandt group at the Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Germany. Currently, she is working at Beijing University of Chemical Technology. Her research focuses on nanostructured polymer surfaces and their effect on protein adsorption and cellular response.

Zhi-Qiang Su completed his PhD in 2005 at Institute of Chemistry, Chinese Academy of Sciences. After a postdoctoral fellow at Tsinghua University, he joined Beijing University of Chemical Technology in 2007. In 2011 he studied at Friedrich-Schiller-University Jena, Germany, as an experienced research fellow of the Alexander-von-Humboldt Foundation. In 2012, he was appointed a full professor. His research covers a wide range of research fields including nano-hybrid materials, biomedical materials, biosensors and bioelectronics. So far, he has published more than 100 papers in international peer-reviewed journals. The published papers have been cited more than 5000 times with an H-index of 43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, XY. & Su, ZQ. Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications. Chin J Polym Sci 39, 1093–1109 (2021). https://doi.org/10.1007/s10118-021-2543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2543-x

Keywords

Navigation