Skip to main content

Advertisement

Log in

High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High-performance carbon nanofibers are highly dependent on the performance of their precursors, especially polyacrylonitrile (PAN). In this work, the copolymer of PAN (coPAN) was synthesized for electrospinning. A self-assembling set-up was used for the stretching of single coPAN nanofibers. FTIR and Raman spectroscopies were used to characterize the chemical structure of coPAN nanofibers. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to monitor the morphology of single coPAN nanofibers under different drawing times. Micro-tensile test was used to determine the mechanical properties of single coPAN nanofibers. The results indicated that the drawing led to an increase in degree of molecular orientation along the fiber axis from 0.656 to 0.808, tensile strength from 304 MPa to 595 MPa, and modulus from 3.1 GPa to 12.4 GPa. This research would provide fundamental information of high-performance electrospun coPAN nanofibers and offer opportunities for the preparation of high-performance carbon nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chand, S. Carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313.

    CAS  Google Scholar 

  2. Yusof, N.; Ismail, A. F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J. Anal. Appl. Pyrolysis 2012, 93, 1–13.

    CAS  Google Scholar 

  3. Liu, Y.; Kumar, S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym. Rev. 2012, 52, 234–258.

    CAS  Google Scholar 

  4. Hou, H.; Xu, W.; Ding, Y. The recent progress on high-performance polymer nanofibers by electrospinning. Journal of Jiangxi Normal University (Natural Science) (in Chinese) 2018, 42, 551–564.

    Google Scholar 

  5. Wei, J.; Liao, M.; Ma, A.; Chen, Y.; Duan, Z.; Hou, X.; Li, M.; Jiang, N.; Yu, J. Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber. Compos. Commun. 2020, 17, 141–146.

    Google Scholar 

  6. Kobets, L.; Deev, I. Carbon fibres: structure and mechanical properties. Compos. Sci. Technol. 1998, 57, 1571–1580.

    Google Scholar 

  7. Paris, O.; Loidl, D.; Peterlik, H. Texture of PAN-and pitch-based carbon fibers. Carbon 2002, 40, 551–555.

    CAS  Google Scholar 

  8. Zeng, H. The development of carbon fibre and its composites in china. In Proceedings of carbon fibres and their composites, Berlin, Heidelberg, 1985, pp. 288–293.

  9. Duan, G.; Fang, H.; Huang, C.; Jiang, S.; Hou, H. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 2018, 53, 15096–15106.

    CAS  Google Scholar 

  10. Zhang, M. Y.; Niu, H. Q.; Qi, S. L.; Tian, G. F.; Wang, X. D.; Wu, D. Z. Structure evolutions involved in the carbonization of polyimide fibers with different chemical constitution. Mater. Today Commun. 2014, 1, 1–8.

    CAS  Google Scholar 

  11. Jiang, S.; Cheong, J. Y.; Nam, J. S.; Kim, I. D.; Agarwal, S.; Greiner, A. High-density fibrous polyimide sponges with superior mechanical and thermal properties. ACS Appl. Mater. Interfaces 2020, 12, 19006–19014.

    CAS  PubMed  Google Scholar 

  12. Jiang, S.; Uch, B.; Agarwal, S.; Greiner, A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl. Mater. Interfaces 2017, 9, 32308–32315.

    CAS  PubMed  Google Scholar 

  13. Bermudez, V.; Ogale, A. A. Adverse effect of mesophase pitch draw-down ratio on carbon fiber strength. Carbon 2020, 168, 328–336.

    CAS  Google Scholar 

  14. Li, W. W.; Kang, H. L.; Xu, J.; Liu, R. G. Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chinese J. Polym. Sci. 2017, 35, 764–772.

    CAS  Google Scholar 

  15. Deng, L.; Young, R. J.; Kinloch, I. A.; Zhu, Y.; Eichhorn, S. J. Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 2013, 58, 66–75.

    CAS  Google Scholar 

  16. Ma, L.; Zhang, Y.; Wang, S. Modified treatment for carbonized cellulose nanofiber application in composites. Compos. Part A 2016, 90, 786–793.

    CAS  Google Scholar 

  17. Tian, J.; Shi, Y.; Fan, W.; Liu, T. Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes. Compos. Commun. 2019, 12, 21–25.

    Google Scholar 

  18. Weng, W.; Kurihara, R.; Wang, J.; Shiratori, S. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance. Compos. Commun. 2019, 15, 135–148.

    Google Scholar 

  19. Wu, Q. Y.; Liang, H. Q.; Li, M.; Liu, B. T.; Xu, Z. K. Hierarchically porous carbon membranes derived from PAN and their selective adsorption of organic dyes. Chinese J. Polym. Sci. 2016, 34, 23–33.

    Google Scholar 

  20. Santos de Oliveira Junior, M.; Manzolli Rodrigues, B. V.; Marcuzzo, J. S.; Guerrini, L. M.; Baldan, M. R.; Rezende, M. C. A statistical approach to evaluate the oxidative process of electrospun polyacrylonitrile ultrathin fibers. J. Appl. Polym. Sci. 2017, 134, 45458.

    Google Scholar 

  21. Hou, X.; Yang, X.; Zhang, L.; Waclawik, E.; Wu, S. Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Mater. Des. 2010, 31, 1726–1730.

    CAS  Google Scholar 

  22. Baseri, S. Preparation and characterization of conductive and antibacterial polyacrylonitrile terpolymer yarns produced by one-step organic coating. J. Text. Instit. 2017, 108, 20–29.

    CAS  Google Scholar 

  23. Yao, K.; Chen, J.; Li, P.; Duan, G.; Hou, H. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos. Commun. 2019, 15, 92–95.

    Google Scholar 

  24. Zhou, Z.; Liu, K.; Lai, C.; Zhang, L.; Li, J.; Hou, H.; Reneker, D. H.; Fong, H. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 2010, 51, 2360–2367.

    CAS  Google Scholar 

  25. Kaur, N.; Kumar, V.; Dhakate, S. R. Synthesis and characterization of multiwalled CNT-PAN based composite carbon nanofibers via electrospinning. SpringerPlus 2016, 5, 483.

    PubMed  PubMed Central  Google Scholar 

  26. Papkov, D.; Zou, Y.; Andalib, M. N.; Goponenko, A.; Cheng, S. Z. D.; Dzenis, Y. A. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 2013, 7, 3324–3331.

    CAS  PubMed  Google Scholar 

  27. Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: a review. Polym. Chem. 2018, 9, 2685–2720.

    CAS  Google Scholar 

  28. Liu, L.; Bakhshi, H.; Jiang, S.; Schmalz, H.; Agarwal, S. Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromol. Rapid Commun. 2018, 39, 1800082.

    Google Scholar 

  29. Sun, Z.; Yang, L.; Zhang, D.; Song, W. High performance, flexible and renewable nano-biocomposite artificial muscle based on mesoporous cellulose/ionic liquid electrolyte membrane. Sensors Actuators B: Chem. 2019, 283, 579–589.

    CAS  Google Scholar 

  30. Jiang, S.; Helfricht, N.; Papastavrou, G.; Greiner, A.; Agarwal, S. Low-density self-assembled poly(N-isopropyl acrylamide) sponges with ultrahigh and extremely fast water uptake and release. Macromol. Rapid Commun. 2018, 39, 1700838.

    Google Scholar 

  31. Jian, S.; Zhu, J.; Jiang, S.; Chen, S.; Fang, H.; Song, Y.; Duan, G.; Zhang, Y.; Hou, H. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018, 8, 4794–4802.

    CAS  Google Scholar 

  32. Jiang, S.; Agarwal, S.; Greiner, A. Low-density open cellular sponges as functional materials. Angew. Chem. Int. Ed. 2017, 56, 15520–15538.

    CAS  Google Scholar 

  33. Agarwal, S.; Jiang, S.; Chen, Y. Progress in the field of water-and/or temperature-triggered polymer actuators. Macromol. Mater. Eng. 2019, 304, 1800548.

    Google Scholar 

  34. Molnar, K.; Jedlovszky-Hajdu, A.; Zrinyi, M.; Jiang, S.; Agarwal, S. Poly(amino acid)-based gel fibers with pH responsivity by coaxial reactive electrospinning. Macromol. Rapid Commun. 2017, 38, 1700147.

    Google Scholar 

  35. Li, Y.; Yin, X.; Yu, J.; Ding, B. Electrospun nanofibers for highperformance air filtration. Compos. Commun. 2019, 15, 6–19.

    Google Scholar 

  36. Duan, G.; Liu, S.; Hou, H. Synthesis of polyacrylonitrile and mechanical properties of its electrospun nanofibers. e-Polymer 2018, 18, 569–573.

    CAS  Google Scholar 

  37. Liao, X.; Dulle, M.; de Souza e Silva, J. M.; Wehrspohn, R. B.; Agarwal, S.; Förster, S.; Hou, H.; Smith, P.; Greiner, A. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 2019, 366, 1376–1379.

    CAS  PubMed  Google Scholar 

  38. Zeng, Z. P.; Shao, Z. C.; Xiao, R.; Lu, Y. G. Structure evolution mechanism of poly(acrylonitrile/itaconic acid/acrylamide) during thermal oxidative stabilization process. Chinese J. Polym. Sci. 2017, 35, 1020–1034.

    CAS  Google Scholar 

  39. Duan, G.; Zhang, H.; Jiang, S.; Xie, M.; Peng, X.; Chen, S.; Hanif, M.; Hou, H. Modification of precursor polymer using copolymerization: a good way to high performance electrospun carbon nanofiber bundles. Mater. Lett. 2014, 122, 178–181.

    CAS  Google Scholar 

  40. Kim, C.; Park, S. H.; Cho, J. I.; Lee, D. Y.; Park, T. J.; Lee, W. J.; Yang, K. S. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spectrosc. 2004, 35, 928–933.

    CAS  Google Scholar 

  41. Huang, Y. S.; Koenig, J. L. Raman spectra of polyacrylonitrile. Appl. Spectrosc. 1971, 25, 620–622.

    CAS  Google Scholar 

  42. Wang, D.; Yu, J.; Duan, G.; Liu, K.; Hou, H. Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. J. Mater. Sci. 2020, 55, 5667–5679.

    CAS  Google Scholar 

  43. Xu, H.; Jiang, S.; Ding, C.; Zhu, Y.; Li, J.; Hou, H. High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater. Lett. 2017, 201, 82–84.

    CAS  Google Scholar 

  44. Yang, H.; Jiang, S.; Fang, H.; Hu, X.; Duan, G.; Hou, H. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FTIR spectroscopy. Spectrochimica Acta Part A 2018, 200, 339–344.

    CAS  Google Scholar 

  45. Jiang, S.; Han, D.; Huang, C.; Duan, G.; Hou, H. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater. Lett. 2018, 216, 81–83.

    CAS  Google Scholar 

  46. Fennessey, S. F.; Farris, R. J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 2004, 45, 4217–4225.

    CAS  Google Scholar 

  47. Yan, H.; Liu, L.; Zhang, Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers. Mater. Lett. 2011, 65, 2419–2421.

    CAS  Google Scholar 

  48. Naraghi, M.; Chasiotis, I.; Kahn, H.; Wen, Y.; Dzenis, Y. Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl. Phys. Lett. 2007, 91, 151901.

    Google Scholar 

  49. Lai, C.; Zhong, G.; Yue, Z.; Chen, G.; Zhang, L.; Vakili, A.; Wang, Y.; Zhu, L.; Liu, J.; Fong, H. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 2011, 52, 519–528.

    CAS  Google Scholar 

  50. Hou, H.; Ge, J. J.; Zeng, J.; Li, Q.; Reneker, D. H.; Greiner, A.; Cheng, S. Z. D. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 2005, 17, 967–973.

    CAS  Google Scholar 

  51. Cai, J.; Chawla, S.; Naraghi, M. Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 2016, 109, 813–822.

    CAS  Google Scholar 

  52. Li, Y.; Góra, A.; Anariba, F.; Baji, A. Enhanced tensile strength and electrical conductivity of electrospun polyacrylonitrile yarns via post-treatment. Polym. Compos. 2019, 40, 1702–1707.

    CAS  Google Scholar 

  53. Bazbouz, M. B.; Stylios, G. K. The tensile properties of electrospun nylon 6 single nanofibers. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1719–1731.

    CAS  Google Scholar 

  54. Zussman, E.; Burman, M.; Yarin, A. L.; Khalfin, R.; Cohen, Y. Tensile deformation of electrospun nylon-6,6 nanofibers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1482–1489.

    CAS  Google Scholar 

  55. Tan, E. P. S.; Ng, S. Y.; Lim, C. T. Tensile testing of a single ultrafine polymeric fiber. Biomaterials 2005, 26, 1453–1456.

    CAS  PubMed  Google Scholar 

  56. Jiang, S.; Duan, G.; Zussman, E.; Greiner, A.; Agarwal, S. Highly flexible and tough concentric triaxial polystyrene fibers. ACS Appl. Mater. Interfaces 2014, 6, 5918–5923.

    CAS  PubMed  Google Scholar 

  57. Chen, L.; Jiang, S.; Chen, J.; Chen, F.; He, Y.; Zhu, Y.; Hou, H. Single electrospun nanofiber and aligned nanofiber belts from copolyimide containing pyrimidine units. New J. Chem. 2015, 39, 8956–8963.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21774053, 21975111, and 51903123), Natural Science Foundation of Jiangsu Province (No. BK20190760), Major Special Projects of Jiangxi Provincial Department of Science and Technology (No. 20114ABF05100), and Technology Plan Landing Project of Jiangxi Provincial Department of Education (No. GCJ2011-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gai-Gai Duan or Hao-Qing Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, TC., Han, DH., Zhu, YM. et al. High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing. Chin J Polym Sci 39, 174–180 (2021). https://doi.org/10.1007/s10118-021-2516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2516-0

Keywords

Navigation