Skip to main content

Advertisement

Log in

COFs-based Porous Materials for Photocatalytic Applications

  • Review
  • Invited review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are an emerging class of photoactive materials, solely composed of light elements. Their ordered structure, crystallinity, and high porosity led to enormous worldwide attention in many research fields. The extensive π-electron conjugation, light-harvesting and charge transport characteristics make them a fascinating polymer for photocatalytic systems. Versatile selection of building blocks and innumerable synthetic methodologies enable them to be a robust platform for solar energy production. In this mini-review, we summarized recent progress and challenges of the design, construction, and applications of COFs-based photocatalysts, and also presented some perspectives on challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev.2009, 38, 185–196.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, N. S. Toward cost-effective solar energy use. Scence2007, 315, 798–801.

    Article  CAS  Google Scholar 

  3. Grätzel, M. Photoelectrochemical cells. Naure2001, 414, 338–344.

    Google Scholar 

  4. Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev.2019, 48, 2109–2125.

    Article  CAS  PubMed  Google Scholar 

  5. Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater.2018, 8, 1701503.

    Article  CAS  Google Scholar 

  6. Slater, A. G.; Cooper, A. I. Porous materials. Function-led design of new porous materials. Science2015, 348, aaa8075.

    Article  PubMed  CAS  Google Scholar 

  7. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed.2008, 47, 8826–8830.

    Article  CAS  Google Scholar 

  8. Bertrand, G. H. V.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dincă, M. Thiophene-based covalent organic frameworks. Proc. Natl. Acad. Sci.2013, 110, 4923–4928.

    Article  CAS  PubMed  Google Scholar 

  9. Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc.2015, 137, 3265–3270.

    Article  CAS  PubMed  Google Scholar 

  10. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science2017, 355, eaal11585.

    Article  CAS  Google Scholar 

  11. Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci.2012, 37, 530–563.

    Article  CAS  Google Scholar 

  12. Lohse, M. S.; Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater.2018, 28, 1705553.

    Article  CAS  Google Scholar 

  13. Waller, P. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res.2015, 48, 3053–3063.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, L. M.; Dornfeld, M.; Hui, P. M.; Frauenheim, T.; Ganz, E. Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared. J. Chem. Phys. 2015, 142, 244706.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, P.; Jiang, X.; Zhao, J. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution. J. Phys. Condes. Matter2016, 28, 034004.

    Article  CAS  Google Scholar 

  16. Chen, K.; Yang, L.; Wu, Z.; Chen, C.; Jiang, J.; Zhang, G. A computational study on the tunability of woven covalent organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2019, 21, 546–553.

    Article  CAS  PubMed  Google Scholar 

  17. Pakhira, S.; Mendoza-Cortes, J. L. Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Phys. Chem. Chem. Phys.2019, 21, 8785–8796.

    Article  CAS  PubMed  Google Scholar 

  18. Sakaushi, K.; Antonietti, M. Carbon- and nitrogen-based organic frameworks. Acc. Chem. Res.2015, 48, 1591–1600.

    Article  CAS  PubMed  Google Scholar 

  19. Vyas, V. S.; Lau, V. W. H.; Lotsch, B. V. Soft photocatalysis: organic polymers for solar fuel productions. Chem. Mater. 2016, 28, 5191–5204.

    Article  CAS  Google Scholar 

  20. Zhang, G.; Lan, Z. A.; Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed.2016, 55, 15712–15727.

    Article  CAS  Google Scholar 

  21. Zhang, Y.; Jin, S. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers2018, 11, 31.

    Article  PubMed Central  CAS  Google Scholar 

  22. Ball, B.; Chakravarty, C.; Mandal, B.; Sarkar, P. Computational investigation on the electronic structure and functionalities of a thiophene-based covalent triazine framework. ACS Omega2019, 4, 3556–3564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci.2019, 6, 1801410.

    Article  CAS  Google Scholar 

  24. Gan, S.; Tong, X.; Zhang, Y.; Wu, J.; Hu, Y.; Yuan, A. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors. Adv. Funct. Mater.2019, 29, 1902757.

    Article  CAS  Google Scholar 

  25. Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc.2018, 140, 4623–4631.

    Article  CAS  PubMed  Google Scholar 

  26. Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci.2014, 5, 2789–2793.

    Article  CAS  Google Scholar 

  27. Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun.2015, 6, 8508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, J.; Tao, X.; Tao, L.; Li, H.; Li, C.; Wang, X.; Li, C.; Li, R.; Yang, Q. Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ.2019, 241, 461–470.

    Article  CAS  Google Scholar 

  30. Sheng, J. L.; Dong, H.; Meng, X. B.; Tang, H. L.; Yao, Y. H.; Liu, D. Q.; Bai, L. L.; Zhang, F. M.; Wei, J. Z.; Sun, X. J. Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 2019, 11, 2313–2319.

    Article  CAS  Google Scholar 

  31. Ding, S. Y.; Wang, P. L.; Yin, G. L.; Zhang, X.; Lu, G. Energy transfer in covalent organic frameworks for visible-light-induced hydrogen evolution. Int. J. Hydrogen Energy2019, 44, 11872–11876.

    Article  CAS  Google Scholar 

  32. Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomaecker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc.2018, 140, 1423–1427.

    Article  CAS  PubMed  Google Scholar 

  33. Hao, W.; Chen, D.; Li, Y.; Yang, Z.; Xing, G.; Li, J.; Chen, L. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis. Chem. Mater.2019, 31, 8100–8105.

    Article  CAS  Google Scholar 

  34. Yan, X.; Liu, H.; Li, Y.; Chen, W.; Zhang, T.; Zhao, Z.; Xing, G.; Chen, L. Ultrastable covalent organic frameworks via self-polycondensation of an A2B2 monomer for heterogeneous photocatalysis. Macromolecules2019, 52, 7977–7983.

    Article  CAS  Google Scholar 

  35. Jin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem2019, 5, 1632–1647.

    Article  CAS  Google Scholar 

  36. Bi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun.2019, 10, 2467.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wei, S.; Zhang, F.; Zhang, W.; Qiang, P.; Yu, K.; Fu, X.; Wu, D.; Bi, S.; Zhang, F. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc.2019, 141, 14272–14279.

    Article  CAS  PubMed  Google Scholar 

  38. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed.2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  39. Niu, F.; Tao, L.; Deng, Y.; Gao, H.; Liu, J.; Song, W. A covalent triazine framework as an efficient catalyst for photodegradation of methylene blue under visible light illumination. New J. Chem.2014, 38, 5695–5699.

    Article  CAS  Google Scholar 

  40. Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci.2015, 8, 3345–3353.

    Article  CAS  Google Scholar 

  41. Bi, J.; Fang, W.; Li, L.; Wang, J.; Liang, S.; He, Y.; Liu, M.; Wu, L. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun.2015, 36, 1799–1805.

    Article  CAS  PubMed  Google Scholar 

  42. Li, L.; Fang, W.; Zhang, P.; Bi, J.; He, Y.; Wang, J.; Su, W. Sulfurdoped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. A2016, 4, 12402–12406.

    Article  CAS  Google Scholar 

  43. Huang, W.; Ma, B. C.; Lu, H.; Li, R.; Wang, L.; Landfester, K.; Zhang, K. A. I. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catal.2017, 7, 5438–5442.

    Article  CAS  Google Scholar 

  44. Wang, K.; Yang, L. M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem. Int. Ed. 2017, 56, 14149–14153.

    Article  CAS  Google Scholar 

  45. Liu, M.; Huang, Q.; Wang, S.; Li, Z.; Li, B.; Jin, S.; Tan, B. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem. Int. Ed.2018, 57, 11968–11972.

    Article  CAS  Google Scholar 

  46. Liu, M.; Jiang, K.; Ding, X.; Wang, S.; Zhang, C.; Liu, J.; Zhan, Z.; Cheng, G.; Li, B.; Chen, H.; Jin, S.; Tan, B. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Adv. Mater.2019, 31, 1807865.

    Article  CAS  Google Scholar 

  47. Liras, M.; Barawi, M.; O’Shea, V. A. D. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem. Soc. Rev.2019, 48, 5454–5487.

    Article  CAS  PubMed  Google Scholar 

  48. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev.2016, 116, 7159–329.

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc.2017, 139, 16228–16234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haase, F.; Banerjee, T.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss.2017, 201, 247–264.

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. H2 evolution with covalent organic framework photocatalysts. ACS Energy Lett.2018, 3, 400–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stegbauer, L.; Zech, S.; Savasci, G.; Banerjee, T.; Podjaski, F.; Schwinghammer, K.; Ochsenfeld, C.; Lotsch, B. V. Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv. Energy Mater. 2018, 8, 1703278.

    Article  CAS  Google Scholar 

  53. Thote, J.; Aiyappa, H. B.; Deshpande, A.; Díaz, D.; Kurungot, S.; Banerjee, R. A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem. Eur. J.2014, 20, 15961–15965.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, J.; Tao, X.; Li, C.; Ma, Y.; Tao, L.; Zheng, D.; Zhu, J.; Li, H.; Li, R.; Yang, Q. Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Appl. Catal. B: Environ.2020, 262, 118271.

    Article  CAS  Google Scholar 

  55. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 2018, 57, 12106–12110.

    Article  CAS  Google Scholar 

  56. Ming, J.; Liu, A.; Zhao, J.; Zhang, P.; Huang, H.; Lin, H.; Xu, Z.; Zhang, X.; Wang, X.; Hofkens, J.; Roeffaers, M. B. J.; Long, J. Hot π-electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Int. Ed.2019, 58, 1–6.

    Article  CAS  Google Scholar 

  57. Cheng, Y. J.; Wang, R.; Wang, S.; Xi, X. J.; Ma, L. F.; Zang, S. Q. Encapsulating [Mo3S13]2- clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun.2018, 54, 13563–13566.

    Article  CAS  Google Scholar 

  58. Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. Sustained solar H2 evolution from a thiazolo[5,4-d]thiazole-bridged covalent organic framework and nickel-thiolate cluster in water. J. Am. Chem. Soc.2019, 141, 11082–11092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao, M. Y.; Li, C. C.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS2: a promising candidate for noble-metal-free photocatalysts. J. Mater. Chem. A2019, 7, 20193–20200.

    Article  CAS  Google Scholar 

  60. Li, L.; Zhou, Z.; Li, L.; Zhuang, Z.; Bi, J.; Chen, J.; Yu, Y.; Yu, J. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater. ACS Sustain. Chem. Eng.2019, 7, 18574–18581.

    Article  CAS  Google Scholar 

  61. Liu, M.; Guo, L.; Jin, S.; Tan, B. Covalent triazine frameworks: synthesis and applications. J. Mater. Chem. A2019, 7, 5153–5172.

    Article  CAS  Google Scholar 

  62. Xu, C.; Zhang, W.; Tang, J.; Pan, C.; Yu, G. Porous organic polymers: an emerged platform for photocatalytic water splitting. Front. Chem.2018, 6, 592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meier, C. B.; Sprick, R. S.; Monti, A.; Guiglion, P.; Lee, J. S. M.; Zwijnenburg, M. A.; Cooper, A. I. Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer2017, 126, 283–290.

    Article  CAS  Google Scholar 

  64. Lin, L.; Wang, C.; Ren, W.; Ou, H.; Zhang, Y.; Wang, X. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci.2017, 8, 5506–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomaecker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854–5857.

    Article  CAS  Google Scholar 

  66. Guiglion, P.; Butchosa, C.; Zwijnenburg, M. A. Polymer photocatalysts for water splitting: insights from computational modeling. Macromol. Chem. Phys.2016, 217, 344–353.

    Article  CAS  Google Scholar 

  67. Jiang, X.; Wang, P.; Zhao, J. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. J. Mater. Chem. A2015, 3, 7750–7758.

    Article  CAS  Google Scholar 

  68. Lan, Z. A.; Fang, Y.; Chen, X.; Wang, X. Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chem. Commun. 2019, 55, 7756–7759.

    Article  CAS  Google Scholar 

  69. Guo, L.; Niu, Y.; Razzaque, S.; Tan, B.; Jin, S. Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438–9445.

    Article  CAS  Google Scholar 

  70. Wang, N.; Cheng, G.; Guo, L.; Tan, B.; Jin, S. Hollow covalent triazine frameworks with variable shell thickness and morphology. Adv. Funct. Mater.2019, 29, 1904781.

    Article  CAS  Google Scholar 

  71. Cheng, Z.; Fang, W.; Zhao, T.; Fang, S.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl. Mater. Interfaces2018, 10, 41415–41421.

    Article  CAS  PubMed  Google Scholar 

  72. Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. J. Mater. Chem. A2018, 6, 19775–19781.

    Article  CAS  Google Scholar 

  73. Wang, D.; Li, X.; Zheng, L. L.; Qin, L. M.; Li, S.; Ye, P.; Li, Y.; Zou, J. P. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale2018, 10, 19509–19516.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, G.; Zheng, L. L.; Wang, D.; Xing, Q. J.; Li, F.; Ye, P.; Xiao, X.; Li, Y.; Zou, J. P. A general strategy via chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chem. Commun. 2019, 55, 4150–4153.

    Article  CAS  Google Scholar 

  75. Jiang, Q.; Sun, L.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. MoS2 quantum dots-modified covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution. ChemSusChem2018, 11, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  76. Li, F.; Wang, D.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B: Environ.2019, 243, 621–628.

    Article  CAS  Google Scholar 

  77. Huang, W.; He, Q.; Hu, Y.; Li, Y. Molecular heterostructures of covalent triazine frameworks for highly enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed.2019, 58, 8676–8680.

    Article  CAS  Google Scholar 

  78. Lan, Z. A.; Fang, Y.; Zhang, Y.; Wang, X. Photocatalytic oxygen evolution from functional triazine-based polymers with tunable band structures. Angew. Chem. Int. Ed.2018, 57, 470–474.

    Article  CAS  Google Scholar 

  79. Xie, J.; Shevlin, S. A.; Ruan, Q.; Moniz, S. J. A.; Liu, Y.; Liu, X.; Li, Y.; Lau, C. C.; Guo, Z. X.; Tang, J. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ. Sci.2018, 11, 1617–1624.

    Article  Google Scholar 

  80. Fresno, F.; Villar-García, I. J.; Collado, L.; Alfonso-González, E.; Reñones, P.; Barawi, M.; de la Peña O’Shea, V. A. Mechanistic view of the main current issues in photocatalytic CO2 reduction. J. Phys. Chem. Lett.2018, 9, 7192–7204.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun.2019, 10, 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, S.; Wang, S.; Guo, L.; Chen, H.; Tan, B.; Jin, S. An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. J. Mater. Chem. C2020, 8, 192–200.

    Article  CAS  Google Scholar 

  84. Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem. Int. Ed.2019, 58, 12392–12397.

    Article  CAS  Google Scholar 

  85. Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc.2019, 141, 17431–17440.

    Article  CAS  PubMed  Google Scholar 

  86. Lu, M.; Li, Q.; Liu, J.; Zhang, F. M.; Zhang, L.; Wang, J. L.; Kang, Z. H.; Lan, Y. Q. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 254, 624–633.

    Article  CAS  Google Scholar 

  87. Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc.2019, 141, 7615–7621.

    Article  CAS  PubMed  Google Scholar 

  88. Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal., B2018, 239, 46–51.

    Article  CAS  Google Scholar 

  89. Fu, Z.; Wang, X.; Gardner, A.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci.2020, 11, 543–550.

    Article  CAS  PubMed  Google Scholar 

  90. Xu, R.; Wang, X. S.; Zhao, H.; Lin, H.; Huang, Y. B.; Cao, R. Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid-gas system. Catal. Sci. Technol.2018, 8, 2224–2230.

    Article  CAS  Google Scholar 

  91. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev.2016, 116, 10075–10166.

    Article  CAS  PubMed  Google Scholar 

  92. Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. A hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N-aryltetrahydroisoquinolines. ChemSusChem2017, 10, 664–669.

    Article  CAS  PubMed  Google Scholar 

  93. Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J. Mater. Chem. A2017, 5, 22933–22938.

    Article  CAS  Google Scholar 

  94. Sun, D.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater.2018, 28, 1707110.

    Article  CAS  Google Scholar 

  95. Chen, R.; Shi, J. L.; Lin, G.; Lang, X.; Wang, C.; Ma, Y. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed.2019, 58, 6430–6434.

    Article  CAS  Google Scholar 

  96. Li, Z.; Zhi, Y.; Shao, P.; Xia, H.; Li, G.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl. Catal. B: Environ.2019, 245, 334–342.

    Article  CAS  Google Scholar 

  97. Liu, S.; Pan, W.; Wu, S.; Bu, X.; Xin, S.; Yu, J.; Xu, H.; Yang, X. Visible-light-induced tandem radical addition-cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chem.2019, 21, 2905–2910.

    Article  CAS  Google Scholar 

  98. Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. J. Am. Chem. Soc.2019, 141, 6152–6156.

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, Y.; Liu, H.; Wu, C.; Zhang, Z.; Pan, Q.; Hu, F.; Wang, R.; Li, P.; Huang, X.; Li, Z. Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angew. Chem. Int. Ed.2019, 131, 5430–5435.

    Article  Google Scholar 

  100. Huang, W.; Byun, J.; Roerich, I.; Ramanan, C.; Blom, P. W. M.; Lu, H.; Wang, D.; da Silva, L. C.; Li, R.; Wang, L.; Landfester, K.; Zhang, K. A. I. Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade. Angew. Chem. Int. Ed.2018, 57, 8316–8320.

    Article  CAS  Google Scholar 

  101. Huang, W.; Wang, Z. J.; Ma, B. C.; Ghasimi, S.; Gehrig, D.; Laquai, F.; Landfester, K.; Zhang, K. A. I. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J. Mater. Chem. A2016, 4, 7555–7559.

    Article  CAS  Google Scholar 

  102. Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R. P.; Ye, M. Y.; Bruckner, A.; Schmidt, J.; Thomas, A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci.2019, 10, 8316–8322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995, 95, 69–96.

    Article  CAS  Google Scholar 

  104. Pan, J.; Guo, L.; Zhang, S.; Wang, N.; Jin, S.; Tan, B. Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance. Chem. Asian J.2018, 13, 1674–1677.

    Article  CAS  PubMed  Google Scholar 

  105. He, S.; Rong, Q.; Niu, H.; Cai, Y. Construction of a superior visible-light-driven photocatalyst based on a C3N4 active center-photoelectron shift platform-electron withdrawing unit triadic structure covalent organic framework. Chem. Commun.2017, 53, 9636–9639.

    Article  CAS  Google Scholar 

  106. Liu, T.; Hu, X.; Wang, Y.; Meng, L.; Zhou, Y.; Zhang, J.; Chen, M.; Zhang, X. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-photosensitizers. J. Photochem. Photobiol. B: Biol.2017, 175, 156–162.

    Article  CAS  Google Scholar 

  107. He, S.; Yin, B.; Niu, H.; Cai, Y. Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction. Appl. Catal. B: Environ.2018, 239, 147–153.

    Article  CAS  Google Scholar 

  108. Chen, W.; Yang, Z.; Xie, Z.; Li, Y.; Yu, X.; Lu, F.; Chen, L. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(VI). J. Mater. Chem. A2019, 7, 998–1004.

    Article  CAS  Google Scholar 

  109. Lv, H.; Zhao, X.; Niu, H.; He, S.; Tang, Z.; Wu, F.; Giesy, J. P. Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater.2019, 369, 494–502.

    Article  CAS  PubMed  Google Scholar 

  110. Wang, R. L.; Li, D. P.; Wang, L. J.; Zhang, X.; Zhou, Z. Y.; Mu, J. L.; Su, Z. M. The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans.2019, 48, 1051–1059.

    Article  CAS  PubMed  Google Scholar 

  111. Hynek, J.; Zelenka, J.; Rathousky, J.; Kubat, P.; Ruml, T.; Demel, J.; Lang, K. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces2018, 10, 8527–8535.

    Article  CAS  PubMed  Google Scholar 

  112. Peng, Y.; Zhao, M.; Chen, B.; Zhang, Z.; Huang, Y.; Dai, F.; Lai, Z.; Cui, X.; Tan, C.; Zhang, H. Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater.2018, 30, 1705454.

    Article  CAS  Google Scholar 

  113. He, S.; Rong, Q.; Niu, H.; Cai, Y. Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ.2019, 247, 49–56.

    Article  CAS  Google Scholar 

  114. Zhu, S. R.; Qi, Q.; Fang, Y.; Zhao, W. N.; Wu, M. K.; Han, L. Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal. Cryst. Growth Des. 2018, 18, 883–891.

    Article  CAS  Google Scholar 

  115. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed.2013, 52, 3770–3774.

    Article  CAS  Google Scholar 

  117. Chen, X.; Addicoat, M.; Jin, E.; Zhai, L.; Xu, H.; Huang, N.; Guo, Z.; Liu, L.; Irle, S.; Jiang, D. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc.2015, 137, 3241–3247.

    Article  CAS  PubMed  Google Scholar 

  118. Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc.2017, 139, 8705–8709.

    Article  CAS  PubMed  Google Scholar 

  119. Tan, J.; Namuangruk, S.; Kong, W.; Kungwan, N.; Guo, J.; Wang, C. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed.2016, 128, 14185–14190.

    Article  Google Scholar 

  120. Hu, C.; Cai, L.; Liu, S.; Pang, M. Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag2Se nanoparticles for enhanced phototherapy. Chem. Commun.2019, 55, 9164–9167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21975086), the International S&T Cooperation Program of China (No. 2018YFE010498), the HUST Innovation Funding (No. 2018JYCXJJ041), Science and Technology Department of Hubei Province (Nos. 2019CFA008 and 2018AAA057) and the Program for HUST Interdisciplinary Innovation Team (No. 2016JCTD104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Guo Li or Bi-En Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XL., Li, HG. & Tan, BE. COFs-based Porous Materials for Photocatalytic Applications. Chin J Polym Sci 38, 673–684 (2020). https://doi.org/10.1007/s10118-020-2394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2394-x

Keywords

Navigation