Skip to main content
Log in

Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Researchers have put significant efforts on developing versatile fluorescent polymeric systems due to their promising biological/biomedical labelling, tracking, monitoring, imaging, and diagnostic applications. However, complicated organic/polymeric synthesis or post-modification of these functionalized platforms is still a big obstacle for their further application and thereby provides clear motivation for exploring alternative strategies for the design and fabrication of easily available fluorescent systems. The marriage of supramolecular polymers and fluorescent imaging can provide a facile and dynamic manner instead of tedious and time-consuming synthesis due to the dynamic and reversible nature of noncovalent interactions. Herein, based on water-soluble pillararene/paraquat molecular recognition, we successfully prepare two amphiphilic polypseudorotaxanes which can self-assemble into supramolecular polymersomes in water. These polymersomes can be reversibly destroyed and reformed by tuning the solution pH. Attributed to the aggregation-induced emission of tetraphenylethylene groups, intense fluorescence can be introduced into the obtained supramolecular polymersomes. Furthermore, pH-triggered release of an encapsulated water-insoluble drug (doxorubicin) from the self-assembled fluorescent supramolecular polymersomes is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. A self-calibrating bipartite viscosity sensor for mitochondria. J. Am. Chem. Soc. 2013, 135, 9181–9185.

    CAS  PubMed  Google Scholar 

  2. Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P. J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc. 2017, 139, 15940–15949.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Peng, H. Q.; Sun, C. L.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds. Adv. Funct. Mater. 2016, 26, 5483–5489.

    CAS  Google Scholar 

  4. Sun, C. L.; Xu, J. F.; Chen, Y. Z.; Niu, L. Y.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. Polym. Chem. 2016, 7, 2057–2061.

    CAS  Google Scholar 

  5. Yang, C.; Wang, X.; Huang, S.; Wang, M. Tunable Forster resonance energy transfer in colloidal nanoparticles composed of polycaprolactone-tethered donors and acceptors: Enhanced near-infrared emission and compatibility for in vitro and in vivo bioimaging. Adv. Funct. Mater. 2018, 28, 1705226–1705238.

    Google Scholar 

  6. Jiang, N.; Ahmed, R.; Rifat, A. A.; Guo, J.; Yin, Y.; Montelongo, Y.; Butt, H.; Yetisen, A. K. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv. Optical Mater. 2018, 6, 1701118–1701127.

    Google Scholar 

  7. Sylvie, R.; Tânia, R.; Clarisse, R.; Daniela, M. C.; José, P. S. F.; Andreia, C. G.; Carlos, B.; Senentxu, L. M. Multifunctional platform based on electroactive polymers and silica nanoparticles for tissue engineering applications. Nanomaterials2018, 8, 933–952.

    Google Scholar 

  8. Robert, G.; Chen, Y. C.; Lee, J. W.; Soman, P.; Zorlutuna, P.; Nichol, J. W.; Bae, H.; Chen, S.; Khademhosseini, A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials2012, 33, 3824–3834.

    Google Scholar 

  9. Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 50, 3430–3434.

    CAS  Google Scholar 

  10. Feng, W.; Jin, M.; Yang, K.; Pei, Y.; Pei, Z. Supramolecular delivery systems based on pillararenes. Chem. Commun. 2018, 54, 13626–13640.

    CAS  Google Scholar 

  11. Reisch, A.; Heimburger, D.; Ernst, P.; Runser, A.; Didier, P.; Dujardin, D.; Klymchenko, A. S. Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol. Adv. Funct. Mater. 2018, 28, 1805157–1805166.

    Google Scholar 

  12. Lou, X. Y.; Yang, Y. W. Manipulating aggregation-induced emission with supramolecular macrocycles. Adv. Optical Mater. 2018, 6, 1800668–1800692.

    Google Scholar 

  13. Liu, F.; Zhao, X.; Zhang, X.; Zhang, X.; Peng, J.; Yang, H.; Deng, K.; Ma, L.; Chang, C.; Wei, H. Fabrication of theranostic amphiphilic conjugated bottle-brush copolymers with alternating heterografts for cell imaging and anticancer drug delivery. Polym. Chem. 2018, 9, 4866–4874.

    CAS  Google Scholar 

  14. Liu, X.; Zhu, J.; Ouyang, K.; Yan, Q. Peroxynitrite-biosignal-responsive polymer micelles as intracellular hypersensitive nanoprobes. Polym. Chem. 2018, 9, 5075–5079.

    CAS  Google Scholar 

  15. Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens. Bioelectron. 2018, 99, 318–324.

    CAS  PubMed  Google Scholar 

  16. Zhao, C.; Zhang, X.; Li, K.; Zhu, S.; Guo, Z.; Zhang, L.; Wang, F.; Fei, Q.; Luo, S.; Shi, P.; Tian, H.; Zhu, W. H. Forster resonance energy transfer switchable self-assembled micellar nanoprobe: Ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation. J. Am. Chem. Soc. 2015, 137, 8490–8498.

    CAS  PubMed  Google Scholar 

  17. Rideau, E.; Wurm, F. R.; Landfester, K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym. Chem. 2018, 9, 5385–5394.

    CAS  Google Scholar 

  18. Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano2018, 12, 4025–4035.

    CAS  PubMed  Google Scholar 

  19. Abdelmohsen, L. K. E.; Williams, A. D. S.; Pille, J.; Ozel, S. G.; Rikken, R. S. M.; Wilson, D. A.; van Hest, J. C. M. Formation of well-defined, functional nanotubes via osmotically induced shape transformation of biodegradable polymersomes. J. Am. Chem. Soc. 2016, 138, 9353–9356.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kulkarni, P. S.; Haldar, M. K.; Confeld, M. I.; Langaas, C. J.; Yang, X.; Qian, S. Y.; Mallik, S. Mitochondria-targeted fluorescent polymersomes for drug delivery to cancer cells. Polym. Chem. 2016, 7, 4151–4154.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bratton, B. P.; Shaevitz, J. W.; Gitai, Z.; Morgenstein, R. M. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. Nat. Commun. 2018, 9, 2797.

    PubMed  PubMed Central  Google Scholar 

  22. Chang, D.; Huang, A.; Olsen, B. D. Kinetic effects on self-assembly and function of protein-polymer bioconjugates in thin films prepared by flow coating. Macromol. Rapid Commun. 2017, 38, 1600449–1600454.

    Google Scholar 

  23. Thomas, C. S.; Olsen, B. D. Coil fraction-dependent phase behavior of a model globular protein-polymer diblock copolymer. Soft Matter2014, 10, 3093–3102.

    CAS  PubMed  Google Scholar 

  24. Yu, G.; Zhao, R.; Shao, L.; Zhou, J.; Yang, J.; Huang, F.; Wu, D.; Tang, G.; Zhang, F.; Chen, X. Pillar[5]arene-based amphiphilic supramolecular brush copolymers: Fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym. Chem. 2016, 7, 6178–6188.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jie, K.; Zhou, Y.; Ji, X. A pH-responsive amphiphilic supramolecular graft copolymer constructed by crown ether based molecular recognition. Polym. Chem. 2015, 6, 218–222.

    CAS  Google Scholar 

  26. Wang, Y.; Sukhishvili, S. A. All-aqueous nanoprecipitation: Spontaneous formation of hydrogen-bonded nanoparticles and nanocapsules mediated by phase separation of poly(Nisopropylacrylamide). Macromol. Rapid Commun. 2017, 38, 1700242–1700246.

    Google Scholar 

  27. Wang, H.; Ji, X.; Li, Z.; Huang, F. Fluorescent supramolecular polymeric materials. Adv. Mater. 2017, 29, 1606117–1606138.

    Google Scholar 

  28. Wang, R. F.; Peng, H. Q.; Chen, P. Z.; Niu, L. Y.; Gao, J. F.; Wu, L. Z.; Tung, C. H.; Chen, Y. Z.; Yang, Q. Z. A hydrogen-bondedsupramolecular- polymer-based nanoprobe for ratiometric oxygen sensing in living cells. Adv. Funct. Mater. 2016, 26, 5419–5425.

    CAS  Google Scholar 

  29. Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q. Dynamic π-π stacked molecular assemblies emit from green to red colors. Nano Lett. 2003, 3, 455–458.

    CAS  Google Scholar 

  30. Lu, W.; Chan, M. C. W.; Cheung, K. K.; Che, C. M. π-π Interactions in organometallic systems Crystal structures and spectroscopic properties of luminescent mono-, bi-, and trinuclear trans-cyclometalated platinum(II) complexes derived from 2,6-diphenylpyridine. Organometallics2001, 20, 2477–2486.

    CAS  Google Scholar 

  31. Nishizawa, S.; Kato, Y.; Teramae, N. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphateinduced self-assembly of a pyrene-functionalized guanidinium receptor. J. Am. Chem. Soc. 1999, 121, 9463–9464.

    CAS  Google Scholar 

  32. Yoshida, K.; Miyazaki, H.; Miura, Y.; Ooyama, Y.; Watanabe, S. Solid-surface fluorescence enhancement behavior of a benzofuranoquinol-type fluorescent host upon enclathration of alicyclic amines. Chem. Lett. 1999, 837–838.

    Google Scholar 

  33. Ban, Q.; Du, J.; Sun, W.; Chen, J.; Wu, S.; Kong, J. Intramolecular copper-containing hyperbranched polytriazole assemblies for label-free cellular bioimaging and redox-triggered copper complex delivery. Macromol. Rapid Commun. 2018, 39, 1800171–1800176.

    Google Scholar 

  34. Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metalligand interactions. Chem. Soc. Rev. 2015, 44, 815–832.

    CAS  PubMed  Google Scholar 

  35. Hu, J.; Liu, S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47, 2084–2095.

    CAS  PubMed  Google Scholar 

  36. Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115.

    CAS  PubMed  Google Scholar 

  37. Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H. W. Stimuli-responsive host-guest systems based on the recognition of cryptands by organic guests. Acc. Chem. Res. 2014, 47, 1995–2005.

    CAS  PubMed  Google Scholar 

  38. Zhang, D. W.; Zhao, X.; Li, Z. T. Aromatic amide and hydrazide foldamer-based responsive host-guest systems. Acc. Chem. Res. 2014, 47, 1961–1970.

    CAS  PubMed  Google Scholar 

  39. Yang, Y. W.; Sun, Y. L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res. 2014, 47, 1950–1960.

    CAS  PubMed  Google Scholar 

  40. Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.

    CAS  PubMed  Google Scholar 

  41. Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 2015, 27, 2981–2988.

    CAS  PubMed  Google Scholar 

  42. Wang, H.; Su, W.; Wang, S.; Wang, X.; Liao, Z.; Kang, C.; Han, L.; Chang, J.; Wang, G.; Pu, P. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale2012, 4, 6501–6508.

    CAS  PubMed  Google Scholar 

  43. Zhang, Y. M.; Li, Y. F.; Fang, H.; He, J. X.; Yong, B. R.; Yao, H.; Wei, T. B.; Lin, Q. Multi-stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudorotaxanes for efficient detection and separation of multi-analytes in aqueous solution. Soft Matter2018, 14, 8529–8536.

    CAS  PubMed  Google Scholar 

  44. Han, Y.; Tian, Y.; Li, Z.; Wang, F. Donor-acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem. Soc. Rev. 2018, 47, 5165–5176.

    CAS  PubMed  Google Scholar 

  45. Wei, T. B.; Chen, J. F.; Cheng, X. B.; Li, H.; Han, B. B.; Yao, H.; Zhang, Y. M.; Lin, Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym. Chem. 2017, 8, 2005–2009.

    CAS  Google Scholar 

  46. Ma, X.; Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 2014, 47, 1971–1981.

    CAS  PubMed  Google Scholar 

  47. Qi, Z.; Schalley, C. A. Exploring macrocycles in functional supramolecular gels: From stimuli responsiveness to systems chemistry. Acc. Chem. Res. 2014, 47, 2222–2233.

    CAS  PubMed  Google Scholar 

  48. Ji, X. F.; Xia, D. Y.; Yan, X.; Wang, H.; Huang, F. H. Supramolecular polymer materials based on crown ether and pillararene hostguest recognition motifs. Acta Polymerica Sinica (in Chinese)2017, 9–18.

    Google Scholar 

  49. Yang, J.; Shao, L.; Yuan, J.; Huang, F. Construction of a pillar[6]arene based water-soluble supramolecular pseudopolyrotaxane driven by cucurbit[8]uril-enhanced π-π interaction. Chem. Commun. 2016, 52, 12510–12512.

    CAS  Google Scholar 

  50. Dhinakaran, M. K.; Gong, W.; Yin, Y.; Wajahat, A.; Kuang, X.; Wang, L.; Ning, G. Configuration-independent AIE-active supramolecular polymers of cyanostilbene through the photo-stable hostguest interaction of pillar[5]arene. Polym. Chem. 2017, 8, 5295–5302.

    CAS  Google Scholar 

  51. Wang, Y.; Lv, M. Z.; Song, N.; Liu, Z. J.; Wang, C.; Yang, Y. W. Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest. Macromolecules2017, 50, 5759–5766.

    CAS  Google Scholar 

  52. Hua, B.; Shao, L.; Zhang, Z.; Sun, J.; Yang, J. Pillar[6]arene/acridine orange host-guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sens. Actuators B2018, 255, 1430–1435.

    CAS  Google Scholar 

  53. Hu, X.; Wu, X.; Wang, S.; Chen, D.; Xia, W.; Lin, C.; Pan, Y.; Wang, L. Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly. Polym. Chem. 2013, 4, 4292–4297.

    CAS  Google Scholar 

  54. Li, E.; Jie, K.; Zhou, Y.; Zhao, R.; Huang, F. Post-synthetic modification of nonporous adaptive crystals of pillar[4]-arene[1]quinone by capturing vaporized amines. J. Am. Chem. Soc. 2018, 140, 15070–15079.

    CAS  PubMed  Google Scholar 

  55. Li, Z.; Zhang, Y.; Zhang, C.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577–8589.

    CAS  PubMed  Google Scholar 

  56. Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic covalent bond based on reversible [4+4] photocycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 2013, 15, 6148–6151.

    CAS  PubMed  Google Scholar 

  57. Jie, K.; Zhou, Y.; Li, E.; Zhao, R.; Huang, F. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals. Angew. Chem. Int. Ed. 2018, 57, 12845–12849.

    CAS  Google Scholar 

  58. Cao, D.; Kou, Y.; Liang, J.; Chen, Z.; Wang, L.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721–9723.

    CAS  Google Scholar 

  59. Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023.

    CAS  PubMed  Google Scholar 

  60. Zhang, H.; Liu, Z.; Zhao, Y. Pillararene-based self-assembled amphiphiles. Chem. Soc. Rev. 2018, 47, 5491–5528.

    CAS  PubMed  Google Scholar 

  61. Yu, G.; Yang, J.; Fu, X.; Wang, Z.; Shao, L.; Mao, Z.; Liu, Y.; Yang, Z.; Zhang, F.; Fan, W.; Song, J.; Zhou, Z.; Gao, C.; Huang, F.; Chen, X. A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoampli. Mater. Horiz. 2018, 5, 429–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jie, K.; Zhou, Y.; Li, E.; Li, Z.; Zhao, R.; Huang, F. Reversible iodine capture by nonporous pillar[6]arene crystals. J. Am. Chem. Soc. 2017, 139, 15320–15323.

    CAS  PubMed  Google Scholar 

  63. Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Bonakala, S.; S. Chong, Y.; Stephenson, A.; Chen, L.; Huang, F.; Cooper, A. I. Styrene purification by guest-induced restructuring of pillar[6]arene. J. Am. Chem. Soc. 2017, 139, 2908–2911.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong, R.; Zhou, Y.; Huang, X.; Zhu, X.; Lu, Y.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498–526.

    CAS  PubMed  Google Scholar 

  65. Mei, J.; Huang, Y.; Tian, H. Progress and trends in AIE-based bioprobes: A brief overview. ACS Appl. Mater. Interfaces2018, 10, 12217–12261.

    CAS  PubMed  Google Scholar 

  66. Furue, R.; Nishimoto, T.; Park, I. S.; Lee, J.; Yasuda, T. Aggregation-induced delayed fluorescence based on donor/acceptor-tethered Janus carborane triads: Unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 2016, 55, 7171–7175.

    CAS  Google Scholar 

  67. Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect: Coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138, 4580–4588.

    CAS  PubMed  Google Scholar 

  68. Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.

    CAS  PubMed  Google Scholar 

  69. Luo, J.; Xie, Z. J.; Lam, W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  70. Ji, X.; Li, Y.; Wang, H.; Zhao, R.; Tang, G.; Huang, F. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 28, 5021–5025.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21861130352) and Newton Advanced Fellowships of The Royal Society (No. NAFR10066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang, Sébastien Perrier or Fei-He Huang.

Electronic supplementary material

10118_2019_2305_MOESM1_ESM.pdf

Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhou, YJ., Jie, KC. et al. Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release. Chin J Polym Sci 38, 1–8 (2020). https://doi.org/10.1007/s10118-019-2305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2305-1

Keywords

Navigation