Skip to main content
Log in

Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Fabrication of flexible transparent electrodes (FTEs) is one of the core technologies in the field of flexible electronics. Among multiple choices of FTEs, poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid) (PEDOT:PSS) has shown its promising application in roll-to-roll manufacturing. A simple yet effective method for substantially boosting the conductivity of these conducting polymer films without causing large-domain aggregations is by adding ethylene glycol (EG) as dopant. Herein, we investigated in detail the effects of the secondary solvent of ethylene glycol (EG) on the optical and electrical characteristics of PEDOT:PSS films. The modified PEDOT:PSS FTEs were deposited using drop-coating techniques as it had greater compatibility for large-area samples than the conventional spin-coating method did. The 6% EG-doped PEDOT:PSS FTE via drop-coating method achieved a high figure of merit (FoM) value of 47.24 and the devices fabricated using the optimal PEDOT:PSS FTE yielded a high power conversion efficiency (PCE) of 8.89%, mostly attributed to the modified PEDOT:PSS films that had excellent optical and electrical characteristics with low surface roughness. These results suggested that EG-doping could effectively boost the conductivity of PEDOT:PSS films and that the modified PEDOT:PSS FTE is suitable for roll-to-roll manufacturing in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaltenbrunner, M.; Adam, G.; Glowacki, E. D.; Drack, M.; Schwodiauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S.; Sariciftci, N. S.; Bauer, S. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032–1039.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; Zang, Z.; Sun, L.; Liu, X.; Ouyang, J. Conductivity enhancement of PEDOT:PSS via addition of chloroplatinic acid and its mechanism. Adv. Electron. Mater. 2017, 3, 1700047.

    Article  CAS  Google Scholar 

  3. Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  CAS  Google Scholar 

  4. Yin, Z.; Huang, Y.; Bu, N.; Wang, X.; Xiong, Y. Inkjet printing for flexible electronics: Materials, processes and equipments. Chinese Sci. Bull. 2010, 55, 3383–3407.

    Article  Google Scholar 

  5. Abbel, R.; Galagan, Y.; Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 2018, 20, 1701190.

    Article  CAS  Google Scholar 

  6. Palumbiny, C. The crystallization of PEDOT:PSS polymeric electrodes probed in situ during printing. Adv. Mater. 2015, 27, 3391–3397.

    Article  CAS  PubMed  Google Scholar 

  7. Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci. China Chem. 2018, 61, 531–537.

    Article  CAS  Google Scholar 

  8. Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171–183.

    Article  CAS  Google Scholar 

  9. Kan, B.; Feng, H.; Yao, H.; Chang, M.; Wan, X.; Li, C.; Hou, J.; Chen, Y. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci. China Chem. 2018, 61, 1307–1313.

    Article  CAS  Google Scholar 

  10. Wu, K.; Zhang, T.; Zhan, L.; Zhong, C.; Gong, S.; Jiang, N.; Lu, Z. H.; Yang, C. Optimizing optoelectronic properties of pyrimidine-based TADF emitters by changing the substituent for organic light-emitting diodes with external quantum efficiency close to 25% and slow efficiency roll-off. Chemisrry 2016, 22, 10860–10866.

    Article  CAS  Google Scholar 

  11. Zhou, Y.; Cheun, H.; Choi, S.; Potscavage, W. J.; Fuentes-Hernandez, C.; Kippelen, B. Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl. Phys. Lett. 2010, 97, 153304.

    Article  CAS  Google Scholar 

  12. Fehse, K.; Walzer, K.; Leo, K.; Lövenich, W.; Elschner, A. Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes. Adv. Mater. 2007, 19, 441–444.

    Article  CAS  Google Scholar 

  13. Fan, X.; Wang, J.; Wang, H.; Liu, X.; Wang, H. Bendable ITO-free organic solar cells with highly conductive and flexible PE-DOT:PSS electrodes on plastic substrates. ACS Appl. Mater. Interfaces 2015, 7, 16287–16295.

    Article  CAS  PubMed  Google Scholar 

  14. Döbbelin, M.; Marcilla, R.; Tollan, C.; Pomposo, J. A.; Sarasua, J. R.; Mecerreyes, D. A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using ionic liquids. J. Mater. Chem. 2008, 18, 5354–5358.

    Article  CAS  Google Scholar 

  15. Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017.

    Article  CAS  Google Scholar 

  16. Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 2018, 30, e1800075.

    Article  CAS  PubMed  Google Scholar 

  17. Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873.

    Article  CAS  Google Scholar 

  18. Fu, X.; Xu, L.; Li, J.; Sun, X.; Peng, H. Flexible solar cells based on carbon nanomaterials. Carbon 2018, 139, 1063–1073.

    Article  CAS  Google Scholar 

  19. You, P.; Liu, Z.; Tai, Q.; Liu, S.; Yan, F. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 2015, 27, 3632–3638.

    Article  CAS  PubMed  Google Scholar 

  20. Gupta, R.; Walia, S.; Hösel, M.; Jensen, J.; Angmo, D.; Krebs, F. C.; Kulkarni, G. U. Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells. J. Mater. Chem. A 2014, 2, 10930.

    Article  CAS  Google Scholar 

  21. Park, J. H.; Lee, D. Y.; Kim, Y. H.; Kim, J. K.; Lee, J. H.; Park, J. H.; Lee, T. W.; Cho, J. H. Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS Appl. Mater. Interfaces 2014, 6, 12380–12387.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y.; Meng, L.; Yang, Y.; Xu, G.; Hong, Z.; Chen, Q.; You, J.; Li, G.; Yang, Y.; Li, Y. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, G.; Kim, S. M.; Lee, S. G.; Bae, T. S.; Mun, C.; Lee, S.; Yu, H.; Lee, G. H.; Lee, H. S.; Song, M.; Yun, J. Bendable solar cells from stable, flexible, and transparent conducting electrodes fabricated using a nitrogen-doped ultrathin copper film. Adv. Funct. Mater. 2016, 26, 4180–4191.

    Article  CAS  Google Scholar 

  24. Yu, Z.; Zhang, Q.; Li, L.; Chen, Q.; Niu, X.; Liu, J.; Pei, Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.

    Article  CAS  PubMed  Google Scholar 

  25. Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: Innovative conductive polymers for bioelectronics. Polymers 2017, 9, 354.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081.

    Article  CAS  Google Scholar 

  27. Nagata, R.; Yanagi, Y.; Fujii, S.; Kataura, H.; Nishioka, Y. Highly conductive DMSO-treated PEDOT:PSS electrodes applied to flexible organic solar cells. IEICE T. Electron. 2015, 98, 411–421.

    Article  Google Scholar 

  28. Palumbiny, C. M.; Heller, C.; Schaffer, C. J.; Körstgens, V.; Santoro, G.; Roth, S. V.; Müller-Buschbaum, P. Molecular Reorientation and structural changes in cosolvent-treated highly conductive PEDOT:PSS electrodes for flexible indium tin oxide-free organic electronics. J. Phys. Chem. C 2014, 118, 13598–13606.

    Article  CAS  Google Scholar 

  29. Gan, L. M.; Chow, P. Y.; Liu, Z.; Han, M.; Quek, C. H. The zwitterion effect in proton exchange membranes as synthesised by polymerisation of bicontinuous microemulsions. Chem. Commun. 2005, 35, 4459–4461.

    Article  CAS  Google Scholar 

  30. Xia, Y.; Ouyang, J. Salt-induced charge screening and significant conductivity enhancement of conducting poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate). Macromolecules 2009, 42, 4141–4147.

    Article  CAS  Google Scholar 

  31. Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J.; Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 2003, 3, 29–32.

    Article  CAS  PubMed  Google Scholar 

  32. Cui. H. Q.; Song, W.; Fandy, B.; Peng, R. X.; Zhang, J. F.; Huang, J. M.; Ge, Z. Y. Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes. Sci. China Chem. 2019, 62, 500–505.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Song, R.; Li, Y.; Shen, J. Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Surf. Sci. 2003, 530, 136–148.

    Article  CAS  Google Scholar 

  34. Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  CAS  PubMed  Google Scholar 

  35. Sekine, N.; Chou, C. H.; Kwan, W. L.; Yang, Y. ZnO nano-ridge structure and its application in inverted polymer solar cell. Org. Electron. 2009, 10, 1473–1477.

    Article  CAS  Google Scholar 

  36. Zhao, B.; He, Z.; Cheng, X.; Qin, D.; Yun, M.; Wang, M.; Huang, X.; Wu, J.; Wu, H.; Cao, Y. Flexible polymer solar cells with power conversion efficiency of 8.7%. J. Mater. Chem. C 2014, 2, 5077–5082.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFE0106000), the National Natural Science Foundation of China (Nos. 21574144, 51773212, 61705240, and 21674123), Zhejiang Provincial Natural Science Foundation of China (No. LR16B040002), Ningbo Municipal Science and Technology Innovative Research Team (Nos. 2015B11002 and 2016B10005), CAS Interdisciplinary Innovation Team, CAS Key Project of Frontier Science Research (No. QYZDB-SSW-SYS030), and CAS Key Project of International Cooperation (No. 174433KYSB20160065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Xiang Peng, Jian-Feng Zhang or Zi-Yi Ge.

Supporting information

10118_2019_2257_MOESM1_ESM.pdf

Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, HQ., Peng, RX., Song, W. et al. Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method. Chin J Polym Sci 37, 760–766 (2019). https://doi.org/10.1007/s10118-019-2257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2257-5

Keywords

Navigation