Skip to main content
Log in

Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate) (P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60 °C for 3 h; the mixture was then spin-cast as a thin film, and annealed at 250 °C for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.

    Article  CAS  PubMed  Google Scholar 

  2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  3. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15–26.

    Article  CAS  Google Scholar 

  4. Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58–77.

    Article  CAS  Google Scholar 

  5. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 2005, 15, 1617–1622.

    Article  CAS  Google Scholar 

  6. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K. Yang, Y. High-efficiency solution processable polymer photovoltaic. Nat. Mater. 2005, 4, 864–868.

    Article  CAS  Google Scholar 

  7. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. T.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 2006, 5, 197–203.

    Article  CAS  Google Scholar 

  8. He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636–4643.

    Article  CAS  PubMed  Google Scholar 

  9. He, Z.; Zhong, C.; Su, S.; Xu, M. Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using inverted device structure. Nat. Photon. 2012, 6, 591–595.

    Article  CAS  Google Scholar 

  10. Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Zhi.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solutionprocessed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484–8487.

    Article  CAS  PubMed  Google Scholar 

  11. Lu, Z.; Li, C. H.; Du, C.; Gong, X.; Bo, Z. S. 6,7-Dialkoxy-2,3- diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage. Chinese J. Polym. Sci. 2013, 31, 901–911.

    CAS  Google Scholar 

  12. Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171–183.

    Article  CAS  Google Scholar 

  13. Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45–61.

    Article  CAS  Google Scholar 

  14. Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006–7043.

    Article  CAS  PubMed  Google Scholar 

  15. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Exciton diffusion and dissociation in a poly(p phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 1996, 68, 3120–3122.

    Article  CAS  Google Scholar 

  16. Yang, X.; van Duren, J. K.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151–2158.

    Article  CAS  Google Scholar 

  17. Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K. Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 2009, 3, 297–303.

    Article  CAS  Google Scholar 

  18. Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H. Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P. Solvent-induced morphology in polymerbased systems for organic photovoltaics. Adv. Funct. Mater. 2011, 21, 3382–3391.

    Article  CAS  Google Scholar 

  19. Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J. Polym. Sci. 2013, 31, 1029–1037.

    Article  CAS  Google Scholar 

  20. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, J. K.; Ma, W. Li.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, 130, 3619–3623.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44–48.

    Article  CAS  Google Scholar 

  23. Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q. Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese J. Polym. Sci. 2017, 35, 302–308.

    Article  CAS  Google Scholar 

  24. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85–88.

    Article  CAS  Google Scholar 

  25. Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 2005, 15, 1193–1196.

    Article  CAS  Google Scholar 

  26. Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583.

    Article  CAS  PubMed  Google Scholar 

  27. Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hulmmelen, J. C.; Blom, P. W. M.; Koster, L. J. A. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl. Phys. Lett. 2006, 89, 012107.

    Article  CAS  Google Scholar 

  28. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644.

    Article  CAS  Google Scholar 

  29. Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791–844.

    Article  CAS  Google Scholar 

  30. Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J. Am. Chem. Soc. 2007, 129, 11036–11038.

    Article  CAS  PubMed  Google Scholar 

  31. Gholamkhass, B.; Holdcroft, S. Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 2010, 22, 5371–5376.

    Article  CAS  Google Scholar 

  32. Dante, M.; Yang, C.; Walker, B.; Wudl, F.; Nguyen, T. Q. Self assembly and chargetransport properties of a polythiophenefullerene triblock copolymer. Adv. Mater. 2010, 22, 1835–1839.

    Article  CAS  PubMed  Google Scholar 

  33. Hiorns, R. C.; Cloutet, E.; Ibarboure, E.; Khoukh, A.; Bejbouji, H.; Vignau, L.; Cramail, H. Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 2010, 43, 6033–6044.

    Article  CAS  Google Scholar 

  34. Sivula, K.; Ball, Z. T.; Watanabe, N.; Fréchet, J. M. J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: Fullerene solar cells. Adv. Mater. 2006, 18, 206–210.

    Article  CAS  Google Scholar 

  35. Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 2009, 19, 5416–5423.

    Article  CAS  Google Scholar 

  36. Heuken, M.; Komber, H.; Erdmann, T.; Senkovskyy, V.; Kiriy, A.; Voit, B. Fullerene-functionalized donor-acceptor block copolymers through etherification as stabilizers for bulk heterojunction solar cells. Macromolecules 2012, 45, 4101–4114.

    Article  CAS  Google Scholar 

  37. Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Lévêque, P.; Audinot, J. N.; Berson, S.; Heiser, T.; Hadzniioannou, G.; Mezzenga, R. A new supramolecular route for using rodcoil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763–768.

    Article  CAS  PubMed  Google Scholar 

  38. Renaud, C.; Mougnier, S. J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; Hadziioannou, G. Block copolymer as a nanostructuring agent for high-efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 2012, 24, 2196–2201.

    Article  CAS  PubMed  Google Scholar 

  39. Gernigon, V.; Lévêque, P.; Richard, F.; Leclerc, N.; Brochon, C.; Braun, C. H.; Ludwigs, S.; Anokhin, D. V.; Ivanov, D. A.; Hadziioannou, G.; Heiser, T. Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly. Macromolecules 2013, 46, 8824–8831.

    Article  CAS  Google Scholar 

  40. Laiho, A.; Ras, R. H. A.; Valkama, S.; Ruokolainen, J.; Österbacka, R.; Ikkala, O. Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 2006, 39, 7648–7653.

    Article  CAS  Google Scholar 

  41. Chan S. H.; Lai, C. S.; Chen, H. L.; Ting, C.; Chen, C. P. Highly efficient P3HT:C60 solar cell free of annealing process. Macromolecules 2011, 44, 8886–8891.

    Article  CAS  Google Scholar 

  42. Yang, X.; Lu, G.; Li, L.; Zhou, E. Nanoscale phaseaggregation induced performance improvement of polymer solar cells. Small 2007, 3, 611–615.

    Article  CAS  PubMed  Google Scholar 

  43. Guhr, K. I.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a polymer support. J. Am. Chem. Soc. 1994, 116, 5997–5998.

    Article  CAS  Google Scholar 

  44. Nie, B.; Hansan, K.; Greaves, M. D.; Rotello, V. M. Reversible covalent attachment of C60 to a furan-functionalized resin. Tetrahedron Lett. 1995, 36, 3617–3618.

    Article  CAS  Google Scholar 

  45. Gheneim, R.; Perez-Berumen, C.; Gandini, A. Diels-Alder reactions with novel polymeric dienes and dienophiles: Synthesis of reversibly cross-linked elastomers. Macromolecules 2002, 35, 7246–7253.

    Article  CAS  Google Scholar 

  46. Zuen, H.; Gandini, A. Crystalline furanic polyisocyanates. Polym. Bull. 1991, 26, 383–390.

    Article  CAS  Google Scholar 

  47. Wu, Z. Q.; Ono, R. J.; Chen, Z.; Li, Z.; Bielawski, C. W. Polythiophene- block-poly(γ-benzyl L-glutamate): Synthesis and study of a new rod-rod block copolymer. Polym. Chem. 2011, 2, 300–302.

    Article  CAS  Google Scholar 

  48. Bhatt, M. P.; Du, J.; Rainbolt, E. A.; Pathiranage, T. M. S. K.; Huang, P.; Reuther, J. F.; Novak, B. M.; Biewer, M. C.; Stefan, M. C. A semiconducting liquid crystalline block copolymer containing regioregular poly(3-hexylthiophene) and nematic poly(n-hexyl isocyanate) and its application in bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 16148–16156.

    Article  CAS  Google Scholar 

  49. Zhou, L.; Jiang, Z. Q.; Xu, L.; Liu, N.; Wu, Z. Q. Polythiophene- block-poly(phenyl isocyanide) copolymers: One-pot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35, 1447–1456.

    Article  CAS  Google Scholar 

  50. Bur, A. J.; Fetters, L. J. The chain structure, polymerization, and conformation of polyisocyanates. Chem. Rev. 1976, 76, 727–746.

    Article  CAS  Google Scholar 

  51. Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev. 2009, 109, 6102–6211.

    Article  CAS  PubMed  Google Scholar 

  52. Mayer, S.; Zentel, R. Chiral polyisocyanates, a special class of helical polymers. Prog. Polym. Sci. 2001, 26, 1973–2013.

    Article  CAS  Google Scholar 

  53. Chae, C. G.; Seo, H. B.; Lee, J. S., Living anionic polymerization of isocyanates. In Anionic polymerization: Principles, practice, strength, consequences and applications, Hadjichristidis, N.; Hirao, A., Eds., Springer, Japan, 2015, pp. 339–386.

    Chapter  Google Scholar 

  54. Shin, Y. D.; Kim, S. Y.; Ahn, J. H.; Lee, J. S. Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules 2001, 34, 2408–2410.

    Article  CAS  Google Scholar 

  55. Min, J.; Shah, P. N.; Ahn, J. H.; Lee, J. S. Effects of different reactive oxyanionic initiators on the anionic polymerizaition of n-hexyl isocyanate. Macromolecules 2011, 44, 3211–3216.

    Article  CAS  Google Scholar 

  56. Shah, P. N.; Min, J.; Chae, C. G.; Nishikawa, N.; Suemasa, D.; Kakuchi, T.; Satoh, T.; Lee, J. S. “Helicity inversion”: Linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules 2012, 45, 8961–8967.

    Article  CAS  Google Scholar 

  57. Min, J.; Shah, P. N.; Chae, C. G.; Lee, J. S. Arrangement of C60 via the selfassembly of postfunctionalizable polyisocyanate block copolymer. Macromol. Rapid Commun. 2012, 33, 2029–2034.

    Article  CAS  PubMed  Google Scholar 

  58. Min, J.; Yoo, H. S.; Shah, P. N.; Chae, C. G.; Lee, J. S. Enolate anionic initiator, sodium deoxybenzoin, for leading living natures by formation of aggregators at the growth chain ends. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1742–1748.

    Article  CAS  Google Scholar 

  59. Chae, C. G.; Shah, P. N.; Min, J.; Seo, H. B.; Lee, J. S. Synthesis of novel amphiphilic polyisocyanate block copolymer with hydroxyl side group. Macromolecules 2014, 47, 1563–1569.

    Article  CAS  Google Scholar 

  60. Shah, P. N.; Chae, C. G.; Min, J.; Shimada, R.; Satoh, T.; Kakuchi, T.; Lee, J. S. A model chiral graft copolymer demonstrates evidence of the transmission of stereochemical information from the side chain to the main chain on a nanometer scale. Macromolecules 2014, 47, 2796–2802.

    Article  CAS  Google Scholar 

  61. Jang Y. H.; Lansac, Y.; Kim, J. K.; Yoo, H. S.; Chae, C. G.; Choi, C. H.; Samal, S.; Lee, J. S. Dual function of a living polymerization initiator through the formation of a chain-end-protecting cluster: Density functional theory calculation. Phys. Chem. Chem. Phys. 2014, 16, 24929–24935.

    Article  CAS  PubMed  Google Scholar 

  62. Chae, C. G.; Shah, P. N.; Min, J.; Yu, Y. G.; Lee, J. S. Anionic polymerization of reactive 3-chloropropyl isocyanate. Macromol. Symp. 2015, 349, 85–93.

    Article  CAS  Google Scholar 

  63. Chae, C. G.; Seo, H. B.; Bak, I. G.; Lee, J. S. Synthesis of amphiphilic helix-coil-helix poly(3-(glycerylthio)propyl isocyanate)- block-polystyrene-block-poly(3-(glycerylthio)propyl isocyanate). Macromolecules 2018, 51, 697–704.

    Article  CAS  Google Scholar 

  64. Chae, C. G.; Bak, I. G.; Lee, J. S. Fundamental kinetics of living anionic polymerization of isocyanates emerging by the sodium diphenylmethane-mediated initiation. Macromolecules 2018, 51, 6771–6781.

    Article  CAS  Google Scholar 

  65. Chae, C. G.; Bak, I. G.; Lee, J. S. Propagation-inspired initiation of an aliphatic sodium amidate for the living anionic homo- and copolymerization of isocyanates: Access to the multiblocky sequence distribution of binary comonomers. Macromolecules 2018, 51, 10083–10094.

    Article  CAS  Google Scholar 

  66. Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules 2004, 37, 3526–3528.

    Article  CAS  Google Scholar 

  67. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 2005, 127, 17542–17547.

    Article  CAS  PubMed  Google Scholar 

  68. Yuan, K.; Li, F.; Chen, Y.; Wang, X.; Chen, L. In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. J. Mater. Chem. 2011, 21, 11886–11894.

    CAS  Google Scholar 

  69. Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. In situ endgroup functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method. Adv. Mater. 2004, 16, 1017–1019.

    Article  CAS  Google Scholar 

  70. Jeffries-EL, M.; Sauvé, G.; McCullough, R. D. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 2005, 38, 10346–10352.

    Article  CAS  Google Scholar 

  71. Higashihara, T.; Ueda, M. Synthesis and characterization of a novel coil-rod-coil triblock copolymers comprised of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) segments. React. Funct. Polym. 2009, 69, 457–462.

    Article  CAS  Google Scholar 

  72. Higashihara, T.; Liu, C. L.; Chen, W. C.; Ueda, M. Synthesis of novel p-conjugated rod-rod-rod triblock copolymers containing poly(3-hexylthiophene) and polyacetylene segments by combination of quasi-living grim and living anionic polymerization. Polymers 2011, 3, 236–251.

    Article  CAS  Google Scholar 

  73. Iwakura, Y.; Uno, K.; Kobayashi, N. Polymerization of isocyanates. V. Thermal degradation of polyisocyanates. J. Polym. Sci., Part A: Polym. Chem. 1968, 6, 2611–2620.

    Article  CAS  Google Scholar 

  74. Durairaj, B.; Dimock, A. W.; Samulski, E. T.; Shaw, M. T. Investigation of the thermal degradation of alkyl isocyanate polymers by direct pyrolysis mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 3211–3225.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Nos. NRF-2015R1A2A1A01002493 and NRF-2018R1A2B6003616). This work was also supported by “Nobel Research Project” grant for Grubbs Center for Polymers and Catalysis funded by the GIST in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Suk Lee.

Additional information

Invited article for special issue of “Ionic Polymerization”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, CG., Min, J., Bak, IG. et al. Synthesis of a Rod-rod Diblock Copolymer, Poly(3-hexylthiophene)-block-poly(furfuryl isocyanate), through the Anionic Polymerization with an Oxyanionic Macroinitiator. Chin J Polym Sci 37, 866–874 (2019). https://doi.org/10.1007/s10118-019-2243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2243-y

Keywords

Navigation