Skip to main content
Log in

Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Multilayer graphene was prepared by mechanical exfoliation of natural graphite with dioctyl phthalate (DOP) as milling medium without solvent. The obtained mixture could be directly mixed with poly(vinyl chloride) (PVC) for melt-forming, with DOP acting as plasticizer and graphene acting as conductive filler for antistatic performance. The composite showed surface resistance of 2.5 × 106 Ω/□ at 1 wt% carbon additive, significantly lower than approx. 7 wt% of raw graphite required for achieving the same level. This value is low enough for practical antistatic criterion of 3 × 108 Ω/□. The effect of filler addition on mechanical performance was minimal, or even beneficial for the milled carbon in contrast to the case of raw graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Compos. Part B 2015, 79, 444–450

    Article  CAS  Google Scholar 

  2. Moulay, S. Chemical modification of poly(vinyl chloride)-Still on the run. Prog. Polym. Sci. 2010, 35(3), 303–331

    Article  CAS  Google Scholar 

  3. Murthy, K.; Ramkumar, K.; Satyam, M. Electrical properties of PVC-graphite thick films. J. Mater. Sci. Lett. 1984, 3(9), 813–816

    Article  CAS  Google Scholar 

  4. Noguchi, T.; Nagai, T.; Seto, J. E. Melt viscosity and electrical conductivity of carbon black PVC composite. J. Appl. Polym. Sci. 1986, 31(6), 1913–1924

    Article  CAS  Google Scholar 

  5. Wang, G. Q.; Zeng, P. Electrical conductivity of poly(vinyl chloride) plastisol short carbon filter composite. Polym. Eng. Sci. 1997, 37(1), 96–100

    Article  CAS  Google Scholar 

  6. Wu, X.; Qiu, J.; Liu, P., Sakai, E. Preparation and characterization of polyamide composites with modified graphite powders. J. Polym. Res. 2013, 20(11), 284

    Article  CAS  Google Scholar 

  7. Yazdani, H.; Smith, B. E.; Hatami, K. Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties. Compos. Part A 2016, 82, 65–77

    Article  CAS  Google Scholar 

  8. Zhang, M.; Zhang, C.; Du, Z.; Li, H.; Zou, W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Compos. Sci. Technol. 2017, 138, 1–7

    Article  CAS  Google Scholar 

  9. Lei, L.; Qiu, J.; Sakai, E. Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem. Eng. J. 2012, 209, 20–27

    Article  CAS  Google Scholar 

  10. Wang, H.; Xie, G. Y.; Ying, Z.; Tong, Y.; Zeng, Y. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films. J. Mater. Sci. Technol. 2015, 31(4), 340–344

    Article  CAS  Google Scholar 

  11. Wang, H.; Zhang, H.; Zhao, W.; Zhang, W.; Chen, G. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement. Compos. Sci. Technol. 2008, 68(1), 238–243

    Article  CAS  Google Scholar 

  12. Li, J.; Kim, J. K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 2007, 67(10), 2114–2120

    Article  CAS  Google Scholar 

  13. Milev, A.; Wilson, M.; Kannangara, G. S. K.; Tran, N. X-ray diffraction line profile analysis of nanocrystalline graphite. Materials Chem. & Phys. 2008, 111(2-3), 346–350

    CAS  Google Scholar 

  14. Montone, A.; Grbovic, J.; Bassetti, A.; Mirenghi, L.; Rotolo, P.; Bonetti, E. Microstructure, surface properties and hydrating behaviour of Mg-C composites prepared by ball milling with benzene. Int. J. Hydrogen Energ. 2006, 31(14), 2088–2096

    Article  CAS  Google Scholar 

  15. Yao, Y. G.; Lin, Z. Y.; Li, Z.; Song, X. J.; Moon, K. S.; Wong, C. P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22(27), 13494–13499

    Article  CAS  Google Scholar 

  16. Welham, N. J.; Berbenni, V.; Chapman, P. G. Effect of extended ball milling on graphite. J. Alloy. Compd. 2003, 349(1-2), 255–263

    Article  CAS  Google Scholar 

  17. Antisari, M. V.; Montone, A.; Jovic, N.; Piscopiello, E.; Alvani, C.; Pilloni, L. Low energy pure shear milling: A method for the preparation of graphite nano-sheets. Scripta. Mater. 2006, 55(11), 1047–1050

    Article  CAS  Google Scholar 

  18. Zhang, K.; Zhang, X.; Li, H.; Xing, X.; Jin, L.; Cao, Q. Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. J. Mater. Sci. 2017, 53(4), 2484–2496

    Article  CAS  Google Scholar 

  19. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446(7131), 60–63

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S. On the roughness of single-and bi-layer graphene membranes. Solid State Commun. 2007, 143(1-2), 101–109

    Article  CAS  Google Scholar 

  21. Horiuchi, S.; Gotou, T.; Fujiwara, M.; Sotoaka, R.; Hirata, M.; Kimoto, K. Carbon nanofilm with a new structure and property. Japanese J. Appl. Phys. 2003, 42(Part 2, No.9A/B), L1073-L1076

    Google Scholar 

  22. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3(9), 563–568

    Article  CAS  Google Scholar 

  23. Hansora, D. P.; Shimpi, N. G.; Mishra, S. Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications. JOM 2015, 67(12), 2855–2868

    Article  CAS  Google Scholar 

  24. Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47(14), 3288–3294

    Article  CAS  Google Scholar 

  25. Vidano, R. P.; Fischbach, D. B.; Willis, L. J.; Loehr, T. M. Observation of raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39(2), 341–344

    Article  CAS  Google Scholar 

  26. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C. Spatially resolved raman spectroscopy of singleand few-layer graphene. Nano Lett. 2007, 7(2), 238–242

    Article  CAS  PubMed  Google Scholar 

  27. Castiglioni, C.; Negri, F.; Rigolio, M.; Zerbi, G. Raman activation in disordered graphites of the A1′ symmetry forbidden k≠0 phonon: The origin of the D line. J. Chem. Phys. 2001, 115(8), 3769–3778

    Article  CAS  Google Scholar 

  28. Nemanich, R. J.; Solin, S. A. 1st-order and 2nd-order Ramanscattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20(2), 392–401

    Article  CAS  Google Scholar 

  29. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143(1-2), 47–57

    Article  CAS  Google Scholar 

  30. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97(18), 187401

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Raman scattering from high-frequency phonons in supported ngraphene layer films. Nano Lett. 2006, 6(12), 2667–2673

    Article  CAS  PubMed  Google Scholar 

  32. Menges, G. Werkstoffkunde Kunststoffe, Carl Hanser Verlag München Wien, 3, Auflage, 1990, p 217–218

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51472253 and 51772306).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhao or Min Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZB., Zhao, Y., Wang, C. et al. Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite. Chin J Polym Sci 36, 1361–1367 (2018). https://doi.org/10.1007/s10118-018-2160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2160-5

Keywords

Navigation