Skip to main content
Log in

Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The mesoscopic simulation technique was applied to describe the phase separation behavior of polyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid) (PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend films containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached 1.16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37(7), 907–974.

    Article  CAS  Google Scholar 

  2. Tong, H.; Hu, C. C.; Yang, S. Y.; Ma, Y. P.; Guo, H. X.; Fan, L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer 2015, 69, 138–147.

    Article  CAS  Google Scholar 

  3. Wen, Y.; Liu, H.; Yang, S. Y.; Fan, L. Transparent and conductive indium tin oxide/polyimide films prepared by hightemperature radio-frequency magnetron sputtering. J. Appl.Polym. Sci. 2015, 132(44), 42753–42764.

    Article  CAS  Google Scholar 

  4. Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications.Prog. Polym. Sci. 2016, 59, 41–85.

    Article  CAS  Google Scholar 

  5. Gu, J. W.; Lv, Z. Y.; Wu, Y. L.; Guo, Y. Q.; Tian, L. D.; Qiu, H.; Li, W. Z.; Zhang, Q. Y. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A-Appl. S. 2017, 94, 209–216.

    Article  CAS  Google Scholar 

  6. Kuo, D. H.; Lin, C. Y.; Jhou, Y. C.; Cheng, J. Y.; Liou, G. S. Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN plus AlN) composite films fabricated by a solution-cast method. Polym. Compos. 2013, 34(2), 252–258.

    Article  CAS  Google Scholar 

  7. Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl. Mater. Interfaces 2014, 6(11), 8639–8645.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, X. Y.; Qu, X. W.; Naito, K.; Zhang, Q. X. Synthesis, tensile, and thermal properties of polyimide/diamond nanocomposites. J. Reinf. Plast. Compos. 2011, 30(8), 661–670.

    Article  CAS  Google Scholar 

  9. Li, H. Y.; Ning, S. F.; Hu, H. B.; Bin, L.; Chen, W.; Chen, S. T. Synthesis and electrical properties of polyimide-Al2O3 composites. Chinese J. Polym. Sci. 2007, 25(3), 271–276.

    Article  CAS  Google Scholar 

  10. Yu, S.; Lee, J. W.; Han, T. H.; Park, C.; Kwon, Y.; Hong, S.M.; Koo, C. M. Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl. Mater. Interfaces 2013, 5(22), 11618–11622.

    Article  CAS  PubMed  Google Scholar 

  11. Choi, S.; Kim, K.; Nam, J.; Shim, S. E. Synthesis of silicacoated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites.Carbon 2013, 60, 254–265.

    Article  CAS  Google Scholar 

  12. Li, T. L.; Hsu, S. L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 2010, 114(20), 6825–6829.

    Article  CAS  PubMed  Google Scholar 

  13. Shoji, Y.; Higashihara, T.; Tokita, M.; Morikawa, J.; Watanabe, J.; Ueda, M. Thermal diffusivity of hexagonal boron nitride composites based on cross-linked liquid crystalline polyimides.ACS Appl. Mater. Interfaces 2013, 5(8), 3417–3423.

    Article  CAS  PubMed  Google Scholar 

  14. Murakami, T.; Ebisawa, K.; Miyao, K.; Ando, S. Enhanced thermal conductivity in polyimide/silver particle composite films based on spontaneous formation of thermal conductive paths. J. Photopolym. Sci. Technol. 2014, 27(2), 187–191.

    Article  Google Scholar 

  15. Cao, J. P.; Zhao, X.; Zhao, J.; Zha, J. W.; Hu, G. H.; Dang, Z.M. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl. Mater. Interfaces 2013, 5(15), 6915–6924.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, D. B.; Gao, Y. F.; Guo, Z. X.; Yu, J. Improved thermal conductivity of ceramic filler-filled polyamide composites by using PA6/PA66 1:1 blend as matrix. J. Appl. Polym. Sci.2017, 134(40), 45371–45377.

    Article  CAS  Google Scholar 

  17. Yorifuji, D.; Ando, S. Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: Advantage of vertical double percolation structure. J. Mater. Chem. 2011, 21(12), 4402–4407.

    Article  CAS  Google Scholar 

  18. Yorifuji, D.; Ando, S. Enhanced thermal diffusivity by vertical double percolation structures in polyimide blend films containing silver nano particles. Macromol. Chem. Phys. 2010, 211(19), 2118–2124.

    Article  CAS  Google Scholar 

  19. Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinityenhanced interfaces. J. Mater. Chem. 2010, 20(14), 2749–2752.

    Article  CAS  Google Scholar 

  20. Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 2013, 5(10), 4374–4382.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, W.; Zuo, J.; Zhang, X.; Zhou, A. Thermal, electrical, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites. J. Compos. Mater. 2013, 48(20), 2517–2526.

    Article  CAS  Google Scholar 

  22. Wang, C.; Paddison, S. J. Mesoscale modeling of hydrated morphologies of sulfonated polysulfone ionomers. Soft Matter 2014, 10(6), 819–830.

    Article  CAS  PubMed  Google Scholar 

  23. Zhong, T. P.; Ai, P. F.; Zhou, J. Structures and properties of pamam dendrimer: A multi-scale simulation study. Fluid Phase Equilib. 2011, 302(1-2), 43–47.

    Article  CAS  Google Scholar 

  24. Xue, Z. J.; Liu, X. Y.; Zhuang, Q. X.; Hu, K.; Han, Z. W. Molecular simulation of the effect of graft structure on the miscibility of high-impact polystyrene blends. Polym. Compos.2012, 33(3), 430–435.

    Article  CAS  Google Scholar 

  25. Yu, G.; Liu, J.; Zhou, J. Mesoscopic coarse-grained simulations of lysozyme adsorption. J. Phys. Chem. B 2014, 118(17), 4451–4460.

    Article  CAS  PubMed  Google Scholar 

  26. Zhuang, Q. X.; Xue, Z. J.; Liu, X. Y.; Yuan, Y. L.; Han, Z. W. Molecular simulation of miscibility of poly(2,6-dimethyl-1,4- phenylene ether)/poly(styrene-co-acrylonitrile) blend with the compatibilizer triblock terpolymer sbm. Polym. Compos. 2011, 32(10), 1671–1680.

    Article  CAS  Google Scholar 

  27. Chen, H. Y.; Wu, J. H.; Luo, S. J.; Xi, H. X.; Qian, Y. Mesodyn and experimental approach to the structural fabrication and pore-size adjustment of SBA-15 molecular sieves. Adsorpt. Sci.Technol. 2009, 27(6), 579–592.

    Article  CAS  Google Scholar 

  28. Luo, X.; Xie, S. J.; Huang, W.; Dai, B. N.; Lu, Z. Y.; Yan, D. Y. Effect of branching architecture on glass transition behavior of hyperbranched copolystyrenes: The experiment and simulation studies. Chinese J. Polym. Sci. 2015, 34(1), 77–87.

    Article  CAS  Google Scholar 

  29. Ouyang, Y. T.; Guo, H. X. Phase behavior of amphiphiles at liquid crystals/water interface: A coarse-grained molecular dynamics study. Chinese J. Polym. Sci. 2014, 32(10), 1298–1310.

    Article  CAS  Google Scholar 

  30. Tanaka, T.; Yamaguchi, K.; Yamamoto, S. Rhodamine-Bdoped and Au(III)-doped PMMA film for three-dimensional multi-layered optical memory. Opt. Commun. 2002, 212(1-3), 45–50.

    Article  CAS  Google Scholar 

  31. Kumacheva, E.; Kalinina, O.; Lilge, L. Three-dimensional arrays in polymer nanocomposites. Adv. Mater. 1999, 11(3), 231–234.

    Article  CAS  Google Scholar 

  32. Chen, H.; Ginzburg, V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci.2016, 59, 41–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hongxia Guo and Ms. Chenchen Hu for their helpful discussion. The computational resources for this research are provided by National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GD., Fan, L., Bai, L. et al. Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity. Chin J Polym Sci 36, 1394–1402 (2018). https://doi.org/10.1007/s10118-018-2155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2155-2

Keywords

Navigation