Skip to main content
Log in

Magnetic and Heat Resistant Poly(imide-ether) Nanocomposites Derived from Methyl Rich 9H-xanthene: Synthesis and Characterization

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study a new series of magnetic and heat resistant nanocomposites were prepared based on a highly soluble poly(imide-ether) (PIE) reinforced with two different types of magnetic nanoparticles via a solution intercalation technique. New PIE with good solubility and desired molar mass containing bulky xanthene rings and amide groups in the side chains was synthesized via thermal cyclization of the poly(amic acid) precursor, obtained from the reaction of a new diamine derived from 9H-xanthene and 4,4′-oxydiphthalic dianhydride (ODPA). Improved solubility was attributed to the presence of xanthene group and flexible ether linkage in the polyimide backbones that reduce the chain-chain interaction and enhance solubility by penetrating solvent molecules into the polyimide chains. Fe3O4 nanoparticles (MNPs) which synthesized from chemical co-precipitation route were coated with silica (SiO2), sequentially with (3-aminopropyl)triethoxysilane and poly-melamine-terephthaldehyde (MNPs-PMT), and then separately dispersed in the poly(amic acid) solutions and thermally imidized to form PIE/Fe3O4 and PIE/MNPs-PMT nanocomposites. The nanostructures and properties of the resultant materials were investigated using FTIR spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties of the nanocomposites were strongly related to the dispersion and interaction between the nanoparticles and PIE matrix. The thermogravimetric analysis (TGA) results showed that the addition of MNPs-PMT nanoparticles resulted in a substantial increase in the thermal stability of the corresponding PIEN. The temperature at 10% weight loss (T10) was increased from 416 °C to 428 °C for PIEN containing 3 wt% MNPs-PMT as compared to neat PIE, as well the char yield enhanced. Furthermore, the MNPs-PMT nanoparticles had better dispersion in the polymer matrix due to the strong intermolecular hydrogen bond interactions between the NH and C=N groups of surface-modified nanoparticles and the PIE matrix than the uncoated Fe3O4 nanoparticles, and exhibited a better intercalated morphology and improved thermal properties. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, H. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 2008, 108(9), 3893–3957.

    Article  CAS  PubMed  Google Scholar 

  2. Wen, J. Organic/inorganic hybrid network materials by the solgel approach. Chem. Mater. 1996, 8(8), 1667–1681.

    Article  CAS  Google Scholar 

  3. Katiyar, V. Poly L-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polym. Degrad. Stab. 2010, 95(12), 2563–2573.

    Article  CAS  Google Scholar 

  4. Zhang, D. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 2009, 50(17), 4189–4198.

    Article  CAS  Google Scholar 

  5. Ramanathan, T. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci., Part B: Polym. Phys. 2005, 43(17), 2269–2279.

    Article  CAS  Google Scholar 

  6. Shabanian, M. Efficient poly(methyl-ether-imide)/LDH nanocomposite derived from a methyl rich bisphenol: from synthesis to properties. Appl. Clay Sci. 2016, 123, 285–291.

    Article  CAS  Google Scholar 

  7. Malmir, S. Morphology, thermal and barrier properties of biodegradable films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos. Part A-Appl. S 2017, 93, 41–48.

    Article  CAS  Google Scholar 

  8. Mao, L. Poly(e-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide: simultaneous enhancement of mechanical and barrier properties. Appl. Clay Sci. 2017, 150, 202–209.

    Article  CAS  Google Scholar 

  9. Lou, L. Facile methods for synthesis of core-shell structured and heterostructured Fe3O4@Au nanocomposites. Appl. Surf. Sci. 2012, 258(22), 8521–8526.

    Article  CAS  Google Scholar 

  10. Zheng, H. Microwave magnetic permeability of Fe3O4 nanoparticles. Chinese Phys. Lett. 2009, 26(1), 017501.

    Article  Google Scholar 

  11. Petri-Fink, A. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005, 26(15), 2685–2694.

    Article  CAS  PubMed  Google Scholar 

  12. Tan, S. Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. ChemPhysChem 2005, 6(8), 1461–1465.

    Article  CAS  PubMed  Google Scholar 

  13. Hong, R. Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol. 2006, 170(1), 1–11.

    Article  CAS  Google Scholar 

  14. Vidal-Vidal, J. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surface A 2006, 288(1), 44–51.

    Article  CAS  Google Scholar 

  15. Zhao, D. Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with coreshell structure. J. Alloy. Compd. 2010, 502(2), 392–395.

    Article  CAS  Google Scholar 

  16. Utech, S. Magnetic polyorganosiloxane core-shell nanoparticles: Synthesis, characterization and magnetic fractionation. J. Magn. Magn. Mater. 2010, 322(21), 3519–3526.

    Article  CAS  Google Scholar 

  17. Lu, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2(3), 183–186.

    Article  CAS  Google Scholar 

  18. Tena, A. Mixed matrix membranes of 6FDA-6FpDA with surface functionalized y-alumina particles. an analysis of the improvement of permselectivity for several gas pairs. Chem. Eng. Sci. 2010, 65(6), 2227–2235.

    Article  CAS  Google Scholar 

  19. Koohmareh, G. Synthesis and characterization of new dispersered functionalized polyimide for use as nonlinear optical material. Des. Monomers Polym. 2012, 15(3), 275–288.

    Article  CAS  Google Scholar 

  20. Imai, Y. Synthesis and properties of new hydroxyl-pendant aromatic polyimides derived from trimethylsilylated 4, 4′-diamino-3, 3′-dihydroxybiphenyl and aromatic tetracarboxylic dianhydrides. J. Polym. Sci., Part A: Poiym. Chem. 2002, 40(11), 1790–1795.

    Article  CAS  Google Scholar 

  21. Yang, H. H., "Aromatic high-strength fibers", John Wiley & Sons, New York, 1989.

    Google Scholar 

  22. Faghihi, K. Synthesis and characterization of new optically active poly(amide-imide)s containing 1,3,4-oxadiazole moiety in the main chain. Polym. Bull. 2010, 65(4), 319–332.

    Article  CAS  Google Scholar 

  23. Abadie, M. J.; Sillion, B., "Polyimides and other hightemperature polymers", Elsevier Science Ltd, Montpellier, France, 1991.

    Google Scholar 

  24. Akhter, T. Preparation and characterization of novel polyimidesilica hybrids. Polym. Adv. Technol. 2013, 24(4), 407–414.

    Article  CAS  Google Scholar 

  25. Kong, J. Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker. Eur. Polym. J. 2012, 48(8), 1394–1405.

    Article  CAS  Google Scholar 

  26. Thiruvasagam, P. Synthesis and characterization of AB-type monomers and polyimides: a review. Des. Monomers Polym. 2013, 16(3), 197–221.

    Article  CAS  Google Scholar 

  27. Garcia, J. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35(5), 623–686.

    Article  CAS  Google Scholar 

  28. Marchildon, K. Polyamides-still strong after seventy years. Macromol. React. Eng. 2011, 5(1), 22–54.

    Article  CAS  Google Scholar 

  29. Mallakpour, S. Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon and L-methionine moieties in the main chain. Polym. Adv. Technol. 2005, 16(10), 732–737.

    Article  CAS  Google Scholar 

  30. Zulfiqar, S. Soluble aromatic polyamide bearing sulfone linkages: synthesis and characterization. High Perform. Polym. 2009, 21(1), 3–15.

    Article  CAS  Google Scholar 

  31. Liaw, D. Synthesis and characterization of new polyamideimides containing pendent adamantyl groups. Polymer 2001, 42(2), 839–845.

    Article  CAS  Google Scholar 

  32. Liaw, D. Synthesis and characterization of novel polyamideimides containing noncoplanar 2,2′-dimethyl-4,4′-biphenylene unit. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(1), 63–70.

    Article  CAS  Google Scholar 

  33. Hsiao, S. Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups. Eur. Polym. J. 2005, 41(3), 511–517.

    Article  CAS  Google Scholar 

  34. Sadavarte, N. Synthesis and characterization of new organosoluble aromatic polyamides and polyazomethines containing pendent pentadecyl chains. High Perform. Polym. 2011, 23(7), 494–505.

    Article  CAS  Google Scholar 

  35. Espeso, J. Synthesis and properties of new aromatic polyisophthalamides with adamantylamide pendent groups. J. Polym. Sci., Pcrt A: Polym. Chem. 2010, 48(8), 1743–1751.

    Article  CAS  Google Scholar 

  36. Tena, A. Influence of the composition and imidization route on the chain packing and gas separation properties of fluorinated copolyimides. Macromolecules 2017, 50(15), 5839–5849.

    Article  CAS  Google Scholar 

  37. Mehdipour-Ataei, S. Soluble, thermally stable poly(ester amide)s derived from terephthalic acid bis(carboxydiphenyl methyl) ester and different diamines. Eur. Polym. J. 2005, 41(1), 65–71.

    Article  CAS  Google Scholar 

  38. Hsiao, S. Polyimides derived from novel asymmetric ether diamine. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(2), 331–341.

    Article  CAS  Google Scholar 

  39. Faghihi, K. Synthesis and characterization of optically active poly(amide-imide)s containing photosensitive chalcone units in the main chain. Chinese J. Polym. Sci. 2010, 28(5), 695–704.

    Article  CAS  Google Scholar 

  40. Shabanian, M. Effect of clay modifier on morphology, thermal properties and flammability of newly synthesized poly(sulfidesulfone-amide). Appl. Clay Sci. 2015, 108, 70–77.

    Article  CAS  Google Scholar 

  41. Khazaka, R. Effects of mechanical stresses, thickness and atmosphere on aging of polyimide thin films at high temperature. Polym. Degrad. Stab. 2013, 98(1), 361–367.

    Article  CAS  Google Scholar 

  42. Wang, C. New fluorinated poly(ether sulfone imide)s with high thermal stability and low dielectric constant. Mater. Chem. Phys. 2014, 143(2), 773–778.

    Article  CAS  Google Scholar 

  43. Hsiao, S. Synthesis and characterization of new diphenylfluorene-based aromatic polyamides derived from 9,9-bis[4-(4-carboxy-phenoxy) phenyl] fluorene. Macromol. Chem. Phys. 1999, 200(6), 1428–1433.

    Article  CAS  Google Scholar 

  44. Yang, C. Preparation and properties of aromatic polyamides and polyimides derived from 3,3-bis[4-(4-aminophenoxy) phenyl]phthalide. J. Polym. Sci., Part A: Polym. Chem. 1994, 32(3), 423–433.

    Article  CAS  Google Scholar 

  45. Yang, C. Syntheses and properties of aromatic polyamides and polyimides based on 3,3-bis[4-(4-aminophenoxy) phenyl]-phthalimidine. Polymer 1995, 36(13), 2607–2614.

    Article  CAS  Google Scholar 

  46. Liaw, D. Synthesis and characterization of new adamantanetype cardo polyamides. Acta Polymerica Sinica (in Chinese) 1999, (4), 135–140.

    Google Scholar 

  47. Liaw, D. Synthesis and characterization of norbornanecontaining cardo polyamides. J. Polym. Sci. Part A: Polym. Chem. 1999, 37(15), 2791–2794.

    Article  CAS  Google Scholar 

  48. Hatakeyama, S. A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (-)-methyl elenolate. J. Chem. Soc. Chem. Commun. 1988, (17), 1202–1204.

    Article  Google Scholar 

  49. Banerjee, A. Chemical aspects of santalin as a histological stain. Stain Technol. 1981, 56(2), 83–85.

    Article  CAS  PubMed  Google Scholar 

  50. Hunter, R. Application of a pH-sensitive fluoroprobe (CSNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microb. 2005, 71(5), 2501–2510.

    Article  CAS  Google Scholar 

  51. Ahmad, M. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D Appl. Phys. 2002, 35(13), 1473–1476.

    Article  CAS  Google Scholar 

  52. Katritzky, A. Benzotriazole-mediated conversions of para-Hsubstituted pyrylium, benzo [b] pyrylium, and xanthylium salts into para-position functionalized derivatives (an indirect electrophilic substitution of electron-deficient heteroaromatics). J. Org. Chem. 1997, 62(23), 8198–8200.

    Article  CAS  PubMed  Google Scholar 

  53. Li, T. A new fluorinated poly(ether amide) bearing xanthene group. Chinese Chem. Lett. 2010, 21(10), 1247–1250.

    Article  CAS  Google Scholar 

  54. Hajibeygi, M. Development of one-step synthesized LDH reinforced multifunctional poly(amide-imide) matrix containing xanthene rings: study on thermal stability and flame retardancy. RSC Adv. 2015, 5(66), 53726–53735.

    Article  CAS  Google Scholar 

  55. Morisaki, Y. [2.2] Paracyclophane-layered polymers endcapped with fluorescence quenchers. Macromolecules 2009, 42(10), 3656–3660.

    Article  CAS  Google Scholar 

  56. Morisaki, Y. Synthesis and properties of [2.2] paracyclophanelayered polymers. Macromolecules 2008, 41(16), 5960–5963.

    Article  CAS  Google Scholar 

  57. Stöber, W. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interf. Sci. 1968, 26(1), 62–69.

    Article  Google Scholar 

  58. Mobinikhaledi, A. pTSA-catalyzed condensation of xylenols and aldehydes under solvent-free conditions: one-pot synthesis of 9#-xanthene or bisphenol derivatives. C. R. Chimie 2013, 16, 1035–1041.

    Article  CAS  Google Scholar 

  59. Schwab, M. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J. Am. Chem. Soc. 2009, 131(21), 7216–7217.

    Article  CAS  PubMed  Google Scholar 

  60. Giri, J. Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J. Magn. Magn. Mater. 2005, 293(1), 62–68.

    Article  CAS  Google Scholar 

  61. Wan, M. The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline. Synthetic Met. 1989, 31(1), 51–59.

    Article  CAS  Google Scholar 

  62. Moghanian, H. Synthesis,characterization and magnetic properties of novel heat resistant polyimide nanocomposites derived from 14#-dibenzo [a,j] xanthene. J. Polym. Res. 2014, 21, 513.

    Article  CAS  Google Scholar 

  63. Yang, C. Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synthetic Met. 2005, 153(1–3), 133–136.

    Article  CAS  Google Scholar 

  64. Jiang, J. Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym. 2008, 68(1), 57–62.

    Article  CAS  Google Scholar 

  65. Farghali, A. Synthesis and characterization of novel conductive and magnetic nano-composites. J. Alloy. Compd. 2010, 499(1), 98–103.

    Article  CAS  Google Scholar 

  66. Liu, D. Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv. Funct. Mater. 2011, 21(8), 1498–1504.

    Article  CAS  Google Scholar 

  67. Lu, A. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46(8), 1222–1244.

    Article  CAS  Google Scholar 

  68. Wang, S. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta 2006, 441(2), 191–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Moghanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghihi, K., Moghanian, H., Mozafari, F. et al. Magnetic and Heat Resistant Poly(imide-ether) Nanocomposites Derived from Methyl Rich 9H-xanthene: Synthesis and Characterization. Chin J Polym Sci 36, 822–834 (2018). https://doi.org/10.1007/s10118-018-2094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2094-y

Keywords

Navigation