Skip to main content
Log in

Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The excellent drug encapsulation, prolonged in vivo circulation time, enhanced pharmacokinetics, and reduced adverse effects make the polymeric assemblies ideal carriers in nanomedicine, and become an emerging research field with rapid development. In vivo, the polymer nanoassemblies will experience five steps, including circulation in the blood, accumulation in the tumoral site, penetration into the deep tumor tissue to reach cancer cells, internalization into cancer cells, and intracellular drug release. However, although tremendous efforts have been made to the material design, currently available carriers still have difficulties in fulfilling all of the requirements. Moreover, the long-standing dilemma of the synchronized stability and permeability of vesicles is still a big challenge, which confused researchers for a long time. This feature article focuses on the recent progress of single- or multi-stimuli triggered theranostic platforms, and the extracellularly reengineered shell-sheddable polymeric nanocarriers are systematically discussed. The perspectives for future developments in the nanocarriers functioned with artificial helical polymers (the potential cell-penetrating peptides mimics) are also proposed. We speculate that this feature article can fit the interesting of diverse readers and a guideline for the design of next generation of drug nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, J. S.; Schenkein, D. P.; Pietrusko, R.; Rolfe, M.; Linette, G. P.; Stec, J.; Stagliano, N. E.; Ginsburg, G. S.; Symmans, W. F.; Pusztai, L.; Hortobagyi, G. N. Targeted therapies for cancer. Am. J. Clin. Pathol. 2004, 122(4), 598–609

    Article  CAS  PubMed  Google Scholar 

  2. Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492

    Article  CAS  PubMed  Google Scholar 

  3. Hu, J. M.; Liu, S. Y. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res. 2014, 47(7), 2084–2095

    Article  CAS  PubMed  Google Scholar 

  4. Yin, J.; Hu, H. B.; Wu, Y. H.; Liu, S. Y. Thermo- and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. Polym. Chem. 2011, 2, 363–371

    Article  CAS  Google Scholar 

  5. Hu, J. M.; Liu, S. Y. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures. Dalton Trans. 2015, 44, 3904–3922

    Article  CAS  PubMed  Google Scholar 

  6. Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 2016, 8(7), 268–296

    Article  Google Scholar 

  7. Zheng, X. C.; Wang, X.; Mao, H.; Wu, W.; Liu, B. R.; Jiang, X. Q. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 2015, 6, DOI: 10.1038/ncomms6834

  8. Yin, J.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining ucst and lcst phase transitions. Langmuir 2014, 30(9), 2551–2558

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, X. C.; Mai, H.; Huo, D.; Wu, W.; Liu, B. R.; Jiang, X. Q. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 2017, 1, DOI: 10.1038/s41551-017-0057

    Google Scholar 

  10. Yin, J.; He, Y. G.; Li, W.; Wu, Z. Q.; Ding, Y. S. Wide range temperature detection with hybrid nanoparticles traced by surface-enhanced Raman scattering. Sci. China Chem. 2014, 57(3), 417–425

    Article  CAS  Google Scholar 

  11. Zhang, L. Z.; Zhang, Y. J.; Wu, W.; Jiang, X. Q. Doxorubicin-loaded boron-rich polymer nanoparticles for orthotopically implanted liver tumor treatment. Chinese J. Polym. Sci. 2013, 31(5), 778–786

    Article  CAS  Google Scholar 

  12. Long, C. Y.; Sheng, M. M.; He, B.; Wu, Y.; Wang, G.; Gu, Z. W. Comparison of drug delivery properties of PEG-b-PDHPC micelles with different compositions. Chinese J. Polym. Sci. 2012, 30(3), 387–396

    Article  CAS  Google Scholar 

  13. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2(1), 16075

    Article  CAS  Google Scholar 

  14. Hu, J. M.; Zhang, G. Q.; Liu, S. Y. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 2012, 41, 5933–5949

    Article  CAS  PubMed  Google Scholar 

  15. Yin, J.; Shi, S. Y.; Hu, J. M.; Liu, S. Y. Construction of polyelectrolyte-responsive microgels, and polyelectrolyte concentration and chain length-dependent adsorption kinetics. Langmuir 2014, 30(31), 9551–9559

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Y. Z.; Zhang, Z. H.; Han, X.; Zhang, J.; Zhang, W. M.; Yin, J. Affinity switching for lysozyme and dual-responsive microgels by stopped-flow technique: kinetic control and activity evaluation. Chinese J. Polym. Sci. 2017, 35(8), 950–960

    Article  CAS  Google Scholar 

  17. Deng, Z. Y.; Hu, J. M.; Liu, S. Y. Reactive oxygen, nitrogen, and sulfur species (RONSS)-responsive polymersomes for triggered drug release. Macromol. Rapid Commun. 2017, 38(11), DOI: 10.1002/marc.201600685

    Google Scholar 

  18. Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325

    Article  CAS  PubMed  Google Scholar 

  19. Barenholz, Y. Doxil®-The first FDA-approved nano-drug: lessons learned. J. Control. Release 2012, 160, 117–134

    Article  CAS  PubMed  Google Scholar 

  20. Von Hoff, D. D.; Ramanathan, R. K.; Borad, M. J.; Laheru, D. A.; Smith, L. S.; Wood, T. E.; Korn, R. L.; Desai, N.; Trieu, V.; Iglesias J. L.; Zhang, H.; Soon-Shiong, P.; Shi, T.; Rajeshkumar, N. V.; Maitra, A; Hidalgo, M. J. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Clin. Oncol. 2011, 29(34), 4548–4554

    Article  CAS  Google Scholar 

  21. Forssen, E. A. The design and development of DaunoXome® for solid tumor targeting in vivo. Adv. Drug Delivery Rev. 1997, 24, 133–150

    Article  CAS  Google Scholar 

  22. Bregoli, L.; Movia, D.; Gavigan-Imedio, J. D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 81–103

    Article  CAS  Google Scholar 

  23. Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 2017, 29(14), DOI: 10.1002/adma.201606628

    Google Scholar 

  24. Sun, Q.; Radosz, M.; Shen, Y. J. Challenges in design of translational nanocarriers. J. Control. Release 2012, 164, 156–169

    Article  CAS  PubMed  Google Scholar 

  25. Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Delivery Rev. 2003, 55, 403–419

    Article  CAS  Google Scholar 

  26. Talelli, M.; Rijcken, C. J. F.; Van, N. C. F.; Storm, G.; Hennink, W. E. Micelles based on HPMA copolymers. Adv. Drug Delivery Rev. 2010, 62, 231–239

    Article  CAS  Google Scholar 

  27. Sun, C.Y.; Shen, S.; Xu, C. F.; Li, H. J.; Liu, Y.; Cao, Z. T.; Yang, X. Z.; Xia, J. X.; Wang, J. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 2015, 137(48), 15217–15224

    Article  CAS  PubMed  Google Scholar 

  28. Sethuraman, V. A.; Na, K.; Bae, Y. H. pH-Responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 2006, 7(1), 64–70

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, L.; Wang, T.; Perche, F.; Taigind, A.; Torchilin, V. P. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc. Natl. Acad. Sci. USA 2013, 110(42), 17047–17052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang, X. Z.; Du, J. Z.; Dou, S.; Mao, C. Q.; Long, H. Y.; Wang, J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano 2012, 6(1), 771–781

    Article  CAS  PubMed  Google Scholar 

  31. Sun, C. Y.; Liu, Y.; Du, J. Z.; Cao, Z. T.; Xu, C. F.; Wang, J. Facile generation of tumor-pH-Labile linkage-bridged block copolymers for chemotherapeutic delivery. Angew. Chem. Int. Ed. 2016, 55(3), 1010–1014

    Article  CAS  Google Scholar 

  32. Chen, J. J.; Ding, J. X.; Xiao, C. S.; Zhuang, X. L.; Chen, X. S. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomater. Sci. 2015, 3, 988–1001

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J. J.; Chen, Q.; Zhu, W. W.; Yi, X.; Yang, Y.; Dong, Z. L.; Liu, Z. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: a multistage Redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 2017, 27(10), 1605926(1-11).

    Article  CAS  Google Scholar 

  34. Torchilin, V. P. TAT peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Delivery Rev. 2008, 60, 548–558

    Article  CAS  Google Scholar 

  35. Wang, W. W.; Cheng, D.; Gong, F. M.; Miao, X. M.; Shuai, X. T. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 2012, 24(1), 115–120

    Article  CAS  PubMed  Google Scholar 

  36. Remant, B. K. C.; Chandrashekaran, V.; Cheng, B.; Chen, H.; Peña, M. M. O.; Zhang, J.; Montgomery, J.; Xu, P. S. Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells. Mol. Pharm. 2014, 11(6), 1897–1905

    Article  CAS  PubMed  Google Scholar 

  37. Xu, P.; van Kirk, E. A.; Zhan, Y.; Murdoch, W. J.; Radosz, M.; Shen, Y. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. Int. Ed. 2007, 46(26), 4999–5002

    Article  CAS  Google Scholar 

  38. Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang J. Tailor-made dual ph-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133(44), 17560–17563

    Article  CAS  PubMed  Google Scholar 

  39. Han, S. S.; Li, Z. Y.; Zhu, J. Y.; Han, K.; Zeng, Z. Y.; Hong, W.; Li, W. X.; Jia, H. Z.; Liu, Y.; Zhuo, R. X. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small 2015, 11(21), 2543–2554

    Article  CAS  PubMed  Google Scholar 

  40. Sui, M. H.; Liu, W. W.; Shen, Y. Q. Nuclear drug delivery for cancer chemotherapy. J. Control. Release 2011, 155, 227–236

    Article  CAS  PubMed  Google Scholar 

  41. Wang, N.; Dong, A. J.; Tang, H. D.; van Kirk, E. A.; Johnson, P. A.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Macromol. Biosci. 2007, 7(11), 1187–1198

    Article  CAS  PubMed  Google Scholar 

  42. Sethuraman1, V. A.; Bae, Y. H. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release 2007, 118, 216–224

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y.; Wang, X. J.; Guo, M.; Yan, H. S.; Wang, C. H.; Liu, K. L. Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine. Chinese J. Polym. Sci. 2014, 32(10), 1329–1337

    Article  CAS  Google Scholar 

  44. Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D. A.; Torchilin, V. P.; Jain, R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995, 55(17), 3752–3756

    CAS  PubMed  Google Scholar 

  45. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823

    Article  CAS  PubMed  Google Scholar 

  46. Chauhan, V. P.; Stylianopoulos, T.; Martin, J. D.; Popovic, Z.; Chen, O.; Kamoun, W. S.; Bawendi, M. G.; Fukumura, D.; Jain, R. K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 2012, 7, 383–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sun, Q. H.; Sun, X. R.; Ma, X.P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J.; Lott, J. P.; Lodge, T. P.; Radosz, M.; Zhao, Y. L. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26(45), 7615–7621

    Article  CAS  PubMed  Google Scholar 

  48. Piedrafita, G.; Keller, M. A.; Ralser, M. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions. Biomolecules 2015, 5(3), 2101–2122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ghadiali, J. E.; Stevens, M. M. Enzyme-responsive nanoparticle systems. Adv. Mater. 2008, 20(22), 4359–4363

    Article  CAS  Google Scholar 

  50. Hahn, M. E.; Gianneschi, N. C. Enzyme-directed assembly and manipulation of organic nanomaterials. Chem. Commun. 2011, 47, 11814–11821

    Article  CAS  Google Scholar 

  51. Ulijn, R. V. Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 2006, 16, 2217–2225

    Article  CAS  Google Scholar 

  52. Li, Y. M.; Liu, G. H.; Wang, X. R;, Hu, J. M.; Liu, S. Y. Enzyme-responsive polymeric vesicles for bacterialstrain-selective delivery of antimicrobial agents. Angew. Chem. Int. Ed. 2016, 55(5), 1760–1764

    Article  CAS  Google Scholar 

  53. Gullotti, E.; Park, J.; Yeo, Y. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles. Pharm. Res. 2013, 30(8), 1956–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Li, D. D.; Ma, Y. C.; Du, J. Z.; Tao, W.; Du, X. J.; Yang, X. Z.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 2017, 17(5), 2871–2878

    Article  CAS  PubMed  Google Scholar 

  55. Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J.; Radosz, M. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 135(2), 933–940

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y. M.; Yang, J. H.; Xu, B.; Gao, F.; Wang, W.; Liu, W. G. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate. ACS Appl. Mater. Interfaces 2015, 7(5), 8114–8124

    Article  CAS  PubMed  Google Scholar 

  57. Huang, S. X.; Shao, K.; Liu, Y.; Kuang, Y. Y.; Li, J. F.; An, S.; Guo, Y. B.; Ma, H. J.; Jiang, C. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 2013, 7(3), 2860–2871

    Article  CAS  PubMed  Google Scholar 

  58. Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Kirk, E. V.; Murdoch, W. J.; Radosz, M. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 135(2), 933–940

    Article  CAS  PubMed  Google Scholar 

  59. Xia, D. Y.; Yu, G. C.; Li, J. Y.; Huang, F. H. Photo-responsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water. Chem. Commun. 2014, 50, 3606–3608

    Article  CAS  Google Scholar 

  60. Xia, D. Y.; Wei, P. F.; Shi, B. B.; Huang, F. H. A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution. Chem. Commun. 2016, 52, 513–516

    Article  CAS  Google Scholar 

  61. Zhao, Y. Light-responsive block copolymer micelles. Macromolecules 2012, 45(9), 3647–3657

    Article  CAS  Google Scholar 

  62. Li, Y. M.; Qian, Y. F.; Liu, T.; Zhang, G. Y.; Liu, S. Y. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromolecules 2012, 13(11), 3877–2886

    Article  CAS  PubMed  Google Scholar 

  63. Karimi, M.; Zangabad, P. S.; Baghaee-Ravari, S.; Ghazadeh, M.; Mirshekari, H.; Hamblin, M. R. Smart nanostructures for cargo delivery: uncaging and activating by light. J. Am. Chem. Soc. 2017, 139(13), 4584–4610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hu, J. J.; Chen, Y. H.; Li, Y. Q.; Zhou, Z. G.; Cheng, Y. Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials 2017, 112, 133–140

    Article  CAS  PubMed  Google Scholar 

  65. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commum. 2016, 7, DOI: 10.1038/ncomms13193

  66. Dvir, T.; Banghart, M. R.; Timko, B. P.; Langer, R.; Kohane, D. S. Photo-targeted nanoparticles. Nano Lett. 2010, 10(1), 250–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Fan, N. C.; Cheng, F. Y.; Ho, J. A.; Yeh, C. S. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. 2012, 51(35), 8806–8810

    Article  CAS  Google Scholar 

  68. Cui, D.; Xie, C.; Pu, C. Y. Development of semiconducting polymer nanoparticles for photoacoustic imaging. Macromol. Rapid Commun. 2017, 38(12), DOI: 10.1002/marc.201700125

    Google Scholar 

  69. Hong, B. J.; Swindell, E. P.; MacRenaris, K. W.; Hankins. P. L.; Chipre, A, J.; Mastarone, D.; Ahn R. W.; Meade, T. J.; O’Halloran, T. V.; Nguyen, S. T. pH-responsive theranostic polymer-caged nanobins: enhanced cytotoxicity and T1 MRI contrast by HER2 targeting. Part. Syst. Charact. 2013, 30(9), 770–774

    Article  CAS  Google Scholar 

  70. Li, B. A novel upconversion nanotheranostic agent for multi-modality imaging-guided chemotherapy with on-demand drug release. Sci. China Chem. 2015, 58(6), 970–70

    Article  CAS  Google Scholar 

  71. Langer, A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv. Res. 2010, 10, DOI: 10.1186/1472-6963-10-283

  72. Ke, C. Y.; Mathias, C. J.; Green, M. A. Folate-receptor-targeted radionuclide imaging agents. Adv. Drug Delivery Rev. 2004, 56, 1143–1160

    Article  CAS  Google Scholar 

  73. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117(3), 901–986

    Article  CAS  PubMed  Google Scholar 

  74. Ma, Y. F.; Huang, J.; Song, S. J.; Chen, H. B.; Zhang, Z. J. Cancer-targeted nanotheranostics: recent advances and perspectives. Small 2016, 12(36), 4936–4954

    Article  CAS  PubMed  Google Scholar 

  75. Li, X. S.; Kim, J. H.; Yoon, J. Y.; Chen, X. Y. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv. Mater. 2017, 29(23), 1606857(1-24).

    Article  CAS  Google Scholar 

  76. Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10(3), 2991–2994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Deng, J.; Gao, C. Y. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity. Nanotechnology 2016, 27(41), 412002

    Article  CAS  PubMed  Google Scholar 

  78. Guo, M.; Mao, H. J.; Li, Y. L.; Zhu, A. J.; He, H.; Yang, H.; Wang, Y. Y.; Tian, X.; Ge, C. C.; Peng, Q. L.; Wang, X. Y.; Yang, X. L.; Chen, X. Y.; Liu, G.; Chen, H. B. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014, 35, 4656–4666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wan, Z. H.; Mao, H. J.; Guo, M.; Li, Y. L.; Zhu, A. J.; Yang, H.; He, H.; Shen, J. K.; Zhou, L. J.; Jiang, Z.; Ge, C. C.; Chen, X. Y.; Yang, X. L.; Liu, G.; Chen, H. B. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 2014, 4(4), 399–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Li, Y.; Deng, Y.; Tian, X.; Ke, H.; Guo, M.; Zhu, A. J.; Yang, T.; Guo, Z. Q.; Ge, Z. S.; Yang, X. L.; Chen, H. B. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano 2015, 9(10), 9626–9637

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, A. J.; Miao, K.; Deng, Y. B.; Ke, H. T.; He, H.; Yang, T.; Guo, M.; Li, Y. L.; Guo, Z. Q.; Wang, Y. Y.; Yang, X. L.; Zhao, Y. L.; Chen, H. B. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermochemotherapy- synergized tumor ablation. ACS Nano 2015, 9(8), 7874–7885

    Article  CAS  PubMed  Google Scholar 

  82. Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 2014, 136(20), 7492–7497

    Article  CAS  PubMed  Google Scholar 

  83. Liu, G. H.; Zhang, G. F.; Hu, J. M.; Wang, X. R.; Zhu, M. Q.; Liu, S. Y. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection. J. Am. Chem. Soc. 2015, 137(36), 11645–11655

    Article  CAS  PubMed  Google Scholar 

  84. Frogley, B. J.; Wright, L. J. Cover picture: a metallaanthracene and derived metallaanthraquinone. Angew. Chem. Int. Ed. 2017, 56(1), 143–147

    Article  CAS  Google Scholar 

  85. Shi, S. Y.; Liu, Y. J.; Chen, Y.; Zhang, Z. H.; Ding, Y. S.; Wu, Z. Q.; Yin, J.; Nie, L. M. Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy. Theranostics 2016, 6(12), 2170–2182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Zhang, P. H.; Wang, Y.; Lian, J.; Shen, Q.; Wang, C.; Ma, B.; Zhang, Y. C.; Xu, T. T.; Li, J. X.; Shao, Y. P.; Xu, F.; Zhu, J. J. Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo. Adv. Mater. 2017, 29, 1702311

    Article  CAS  Google Scholar 

  87. Kakizawa, Y.; Harada, A.; Kataoka, K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc. 1999, 121(48), 11247–11248

    Article  CAS  Google Scholar 

  88. Wu, Z.; Huang, J. B.; Yan, Y. Electrostatic polyion micelles with fluorescence and MRI dual functions. Langmuir 2015, 31(29), 7926–7933

    Article  CAS  PubMed  Google Scholar 

  89. Huynh, V. T.; Chen, G. J.; De, S. P.; Stenzel, M. H. Thiol-yne and Thiol-ene “click” chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles. Biomacromolecules 2011, 12(5), 1738–1751

    Article  CAS  PubMed  Google Scholar 

  90. O’Reilly, R. K.; Joralemon, M. J.; Hawker, C. J.; Wooley, K. L. Preparation of orthogonally-functionalized core Click cross-linked nanoparticles. New J. Chem. 2007, 31, 718–724

    Article  Google Scholar 

  91. Zhang, Z. H.; Yin, L. C.; Tu, C. L.; Song, Z. Y.; Zhang, Y. F.; Xu, Y. X.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. J. Redox-responsive, core cross-linked polyester micelles. ACS Macro. Lett. 2013, 2(1), 40–44

    Article  CAS  PubMed  Google Scholar 

  92. Deng, Z. Y.; Qian, Y. F.; Yu, Y. Q.; Liu, G. H.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J. Am. Chem. Soc. 2016, 138(33), 10452–10466

    Article  CAS  PubMed  Google Scholar 

  93. Wang, X. R.; Liu, G. H.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated “traceless” crosslinking. Angew. Chem. lnt. Ed. 2014, 53(12), 3138–3142

    Article  CAS  Google Scholar 

  94. Wang, X. R.; Hu, J. M.; Liu, G. H.; Tian, J.; Wang, H. J.; Gong, M.; Liu, S. Y.; Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions. J. Am. Chem. Soc. 2015, 137(48), 15262–15275

    Article  CAS  PubMed  Google Scholar 

  95. Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741

    Article  Google Scholar 

  96. Wang, Z.; Yong, T. Y.; Wan, J. S.; Li, Z. H.; Zhao, H.; Zhao, Y. B.; Gan, L.; Yang, X. Y.; Xu, H. B.; Zhang, C. Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing. ACS Appl. Mater. Interfaces 2015, 7(5), 3420–3425

    Article  CAS  PubMed  Google Scholar 

  97. Jiang, B. P.; Tan, X. Y.; Shen, X. C.; Lei, W. Q.; Liang, W. Q.; Ji, S. C.; Liang, H. One-step fabrication of a multifunctional aggregation-induced emission nanoaggregate for targeted cell imaging and enzyme-triggered cancer chemotherapy. ACS Macro Lett. 2016, 5(4), 450–454

    Article  CAS  Google Scholar 

  98. Wang, X.; Yang, Y. Y.; Zhuang, Y. P.; Gao, P. Y.; Yang, F.; Shen, H.; Guo, H. X.; Wu, D. C. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery. Biomacromolecules 2016, 17(9), 2920–2929

    Article  CAS  PubMed  Google Scholar 

  99. Shi, H. B.; Kwok, R. T. K.; Liu, J. Z.; Xing, B. G.; Tang, B. Z.; Liu, B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134(43), 17972–17981

    Article  CAS  PubMed  Google Scholar 

  100. Jiang, B. P.; Guo, D. S.; Liu, Y. C.; Wang, K. P.; Liu, Y. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene. ACS Nano 2014, 8(2), 1609–1618

    Article  CAS  PubMed  Google Scholar 

  101. He, Y. G.; Shi, S. Y.; Liu, N.; Ding, Y. S.; Yin, J.; Wu, Z. Q. Tetraphenylethene-functionalized conjugated helical poly(phenyl isocyanide) with tunable light emission, assembly morphology, and specific applications. Macromolecules 2016, 49(1), 48–58

    Article  CAS  Google Scholar 

  102. Han, X.; Zhang, J.; Qiao, C. Y.; Zhang, W. M.; Yin, J.; Wu, Z. Q. High-efficiency cell-penetrating helical poly(phenyl isocyanide) chains modified cellular tracer and nanovectors with thiol ratiometric fluorescence imaging performance. Macromolecules 2017, 50(11), 4114–4125

    Article  CAS  Google Scholar 

  103. Chen, Y.; Zhang, Z. Z.; Han, X.; Yin, J.; Wu, Z. Q. Oxidation and acid milieu-disintegratable nanovectors with rapid cell-penetrating helical polymer chains for programmed drug release and synergistic chemo-photothermal therapy. Macromolecules 2016, 49(20), 7718–7727

    Article  CAS  Google Scholar 

  104. Rajora, A. K.; Ravishankar, D.; Osborn, H. M. I.; Greco, F. Impact of the enhanced permeability and retention (EPR) Effect and cathepsins levels on the activity of polymer-drug conjugates. Polymers 2014, 6(8), 2186–2220

    Article  CAS  Google Scholar 

  105. Huang, M. M.; Zhao, K. J.; Wang, L.; Lin, S. Q.; Li, J. J.; Chen, J. B.; Zhao, C. G.; Ge, Z. S. Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release. ACS Appl. Mater. Interfaces 2016, 8(18), 11226–11236

    Article  CAS  PubMed  Google Scholar 

  106. Hu, X. L.; Hu, J. M.; Tian, J.; Ge, Z. S; Zhang, G. Y.; Luo, K. F.; Liu, S. Y. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 2013, 135(46), 17617–17629

    Article  CAS  PubMed  Google Scholar 

  107. Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137(1), 362–368

    Article  CAS  PubMed  Google Scholar 

  108. Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137(10), 3458–3461

    Article  CAS  PubMed  Google Scholar 

  109. Morris, M. C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnol. 2001, 19, 1173–1176

    Article  CAS  Google Scholar 

  110. Daniels, D. S.; Schepartz, A. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J. Am. Chem. Soc. 2007, 129(47), 14578–14579

    Article  CAS  PubMed  Google Scholar 

  111. Smith, B. A.; Daniels, D. S.; Coplin, A. E.; Jordan, G. E.; McGregor, L. M. A. Minimally cationic cell-permeable miniature proteins via α-helical arginine display. J. Am. Chem. Soc. 2008, 130(10), 2948–2949

    Article  CAS  PubMed  Google Scholar 

  112. Tang, H. Y.; Yin, L. C.; Kim, K. H.; Cheng, J. J. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chem. Sci. 2013, 4, 3839–3844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Yang, W. H.; Yu, C. M.; Yao, S. Q.; Wu, S. Z. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs. Polym. Chem. 2017, 8, 4043–4051

    Article  CAS  Google Scholar 

  114. Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. The macromolecular route to chiral amplification. Angew. Chem. Int. Ed. 1999, 38(21), 3138–3154

    Article  CAS  Google Scholar 

  115. Maeda, K.; Wakasone, S.; Shimomura, K.; Ikai, T.; Kanoh, S. Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant. Chem. Commun. 2012, 48, 3342–3344

    Article  CAS  Google Scholar 

  116. Nieh, M. P.; Goodwin, A. A.; Stewart, J. R.; Novak, B. M.; Hoagland, D. A. Chain stiffness of a high molecular weight polyguanidine prepared by living polymerization. Macromolecules 1998, 31(9), 3151–3154

    Article  CAS  Google Scholar 

  117. Reuther, J. F.; Bhatt, M. P.; Tian, G.; Batchelor, B. L.; Campos, R.; Novak, B. M.; Controlled living polymerization of carbodiimides using versatile, air-stable nickel(II) initiators: facile incorporation of helical, rod-like materials. Macromolecules 2014, 47(14), 4587–4595

    Article  CAS  Google Scholar 

  118. Shi, S. Y.; He, Y. G.; Chen, W. W.; Liu, N.; Zhu, Y. Y.; Ding, Y. S.; Yin, J.; Wu, Z. Q. Polypeptide-b-poly(phenyl isocyanide) hybrid rod-rod copolymers: one-pot synthesis, self-assembly, and cell imaging. Macromol. Rapid Commun. 2015, 36(16), 1511–1520

    Article  CAS  PubMed  Google Scholar 

  119. He, Y. G.; Shi, S. Y.; Liu, N.; Zhu, Y. Y.; Ding, Y. S.; Yin, J.; Wu, Z. Q. Fabrication of SERS-active conjugated copolymers/gold nanoparticles composite films by interface-directed assembly. RSC Adv. 2015, 5, 39697–39704

    Article  CAS  Google Scholar 

  120. Li, W.; He, Y. G.; Shi, S. Y.; Liu, N.; Zhu, Y. Y.; Ding, Y. S.; Yin, J.; Wu, Z. Q. Fabrication of a multi-charge generable poly(phenyl isocyanide)-block-poly(3-hexylthiophene) rod-rod conjugated copolymer. Polym. Chem. 2015, 6, 2348–2355

    Article  CAS  Google Scholar 

  121. Yin, J.; Xu, L.; Han, X.; Zhou, L.; Li, C. L.; Wu, Z. Q. A facile synthetic route to stereoregular helical poly(phenyl isocyanide)s with defined pendants and controlled helicity. Polym. Chem. 2017, 8, 545–556

    Article  CAS  Google Scholar 

  122. Zhang, Z. Z.; Qiao, C. Y.; Zhang, J.; Zhang, W. M.; Yin, J.; Wu, Z. Q. Synthesis of unimolecular micelles with incorporated hyperbranched boltorn h30 polyester modified with hyperbranched helical poly(phenyl isocyanide) chains and their enantioselective crystallization performance. Macromol. Rapid Commun. 2017, 38, DOI: 10.1002/marc.201700315

  123. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science, 1999, 284(5415), 785–788

    Article  CAS  PubMed  Google Scholar 

  124. Kajitani, T.; Onouchi, H.; Sakurai, S. I.; Nagai, K.; Okoshi, K.; Onitsuka, K.; Yashima, E. Latticelike smectic liquid crystal phase in a rigid-rod helical polyisocyanide with mesogenic pendants. J. Am. Chem. Soc. 2011, 133(24), 9156–9159

    Article  CAS  PubMed  Google Scholar 

  125. Xu, A. Q.; Hu, G. X.; Hu, Y. L.; Zhang, X. Q.; Liu, K.; Kuang, G. C.; Zhang, A. F. Remarkable structure effects on chiroptical properties of polyisocyanides carrying proline pendants. Chem. Asian J. 2013, 8(9), 2003–2014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yin.

Additional information

Invited paper for special issue of “Supramolecular Self-Assembly”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WM., Zhang, J., Qiao, Z. et al. Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. Chin J Polym Sci 36, 273–287 (2018). https://doi.org/10.1007/s10118-018-2035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2035-9

Keywords

Navigation