Skip to main content
Log in

Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: Effect of composition and hard segment ratio

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyester-based biodegradable polyurethane (PU) with different hard segment ratios was selected to modify the impact toughness of poly(L-lactide) (PLLA). The influence of blending composition and hard segment ratio of PU on the phase morphology, crystallization behavior and mechanical properties of PLLA/PU blends has been investigated systematically. The results showed that the PU particles were uniformly dispersed in PLLA matrix at a scale from submicrons to several microns. The glass transition temperature of PU within these blends decreased compared to that of neat PU, but rose slightly with its content and hard segment ratio. The presence of PU retarded the crystallization ability of PLLA, whereas enhanced its elongation at break and impact resistance effectively. As the PU content reaches up to 30 wt%, the phenomenon of brittle-ductile transition occurred, resulting in a rougher fracture surface with the formation of fibril-like structure. Moreover, under the same concentrations, the elongation at break and impact strength of PLLA blends decreased slightly with the increase of hard segment ratio of PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garlotta, D., J. Polym. Environ., 2001, 9(2): 63

    Article  CAS  Google Scholar 

  2. Ikada, Y. and Tsuji, H., Macromol. Rapid Commun., 2000, 21(3): 117

    Article  CAS  Google Scholar 

  3. Nair, L.S. and Laurencin, C.T., Prog. Polym. Sci., 2007(8–9), 32: 762

    Article  CAS  Google Scholar 

  4. Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 2012, 37(12): 1657

    Article  CAS  Google Scholar 

  5. Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., Lopez-Manchado, M.A. and Kenny, J.M., Prog. Polym. Sci., 2013, 38(10–11): 1720

    Article  CAS  Google Scholar 

  6. Lim, L.T., Auras, R. and Rubino, M., Prog. Polym. Sci., 2008, 33(8): 820

    Article  CAS  Google Scholar 

  7. Auras, R., Harte, B. and Selke, S., Macromol. Biosci., 2004, 4(9): 835

    Article  CAS  Google Scholar 

  8. Drumright, R.E., Gruber, P.R. and Henton, D.E., Adv. Mater., 2000, 12(23): 1841

    Article  CAS  Google Scholar 

  9. Sun, Y. and He, C., Macromolecules, 2013, 46(24): 9625

    Article  CAS  Google Scholar 

  10. Martello, M.T. and Hillmyer, M.A., Macromolecules, 2011, 44(21): 8537

    Article  CAS  Google Scholar 

  11. Wanamaker, C.L., Bluemle, M.J., Pitet, L.M., O’Leary, L.E., Tolman, W.B. and Hillmyer, M.A., Biomacromolecules, 2009, 10(10): 2904

    Article  CAS  Google Scholar 

  12. Pezzin, A.P.T., van Ekenstein, G., Zavaglia, C.A.C., ten Brinke, G. and Deuk, E.A.R., J. Appl. Polym. Sci., 2003, 88(12): 2744

    Article  CAS  Google Scholar 

  13. Afrifah, K.A. and Matuana, L.M., Macromol. Mater. Eng., 2010, 295(9): 802

    Article  CAS  Google Scholar 

  14. Anderson, K.S., Lim, S.H. and Hillmyer, M.A., J. Appl. Polym. Sci., 2003, 89(14): 3757

    Article  CAS  Google Scholar 

  15. Li, Y. and Shimizu, H., Eur. Polym. J., 2009, 45(3): 738

    Article  CAS  Google Scholar 

  16. Gaikwad, A.N., Wood, E.R., Ngai, T. and Lodge, T.P., Macromolecules, 2008, 41(7): 2502

    Article  CAS  Google Scholar 

  17. Semba, T., Kitagawa, K., Ishiaku, U.S. and Hamada, H., J. Appl. Polym. Sci., 2006, 101(3): 1816

    Article  CAS  Google Scholar 

  18. Wang, R.Y., Wang, S.F., Zhang, Y., Wan, C.Y. and Ma, P.M., Polym. Eng. Sci., 2009, 49(1): 26

    Article  CAS  Google Scholar 

  19. Wu, D.D., Li, W., Zhao, Y., Deng, Y.J., Zhang, H.L., Zhang, H.X. and Dong, L.S., Chinese J. Polym. Sci., 2015, 33(3): 444

    Article  CAS  Google Scholar 

  20. Yang, T.B., Sun, X.L., Ren, Z.J., Li, H.H. and Yan, S.K., Chinese J. Polym. Sci., 2014, 32(9): 1119

    Article  CAS  Google Scholar 

  21. Wang, G.Y. and Qiu, Z.B., Chinese J. Polym. Sci., 2014, 32(9): 1139

    Article  CAS  Google Scholar 

  22. Wu, D.D., Li, W., Liang, H.Y., Liu, S.R., Fang, J.Y., Zhang, H.L., Zhang, H.X. and Dong, L.S., Chinese J. Polym. Sci., 2014, 32(7): 914

    Article  CAS  Google Scholar 

  23. Zhang, S.M., Zhang, H.X., Zhang, W.Y., Wu, Z.Q., Chen, F. and Fu, Q., Chinese J. Polym. Sci., 2014, 32(7): 823

    Article  CAS  Google Scholar 

  24. Pinijmontree, T. and Vao-soongnern, V., Chinese J. Polym. Sci., 2014, 32(5): 640

    Article  CAS  Google Scholar 

  25. Na, Y.H., He, Y., Shuai, X., Kikkawa, Y., Doi, Y. and Inoue, Y., Biomacromolecules, 2002, 3(6): 1179

    Article  CAS  Google Scholar 

  26. Chattopadhyay, D.K. and Webster, D.C., Prog. Polym. Sci., 2009, 34(10): 1068

    Article  CAS  Google Scholar 

  27. Madbouly, S.A. and Otaigbe, J.U., Prog. Polym. Sci., 2009, 34(12): 1283

    Article  CAS  Google Scholar 

  28. Petrović, Z.S. and Ferguson, J., Prog. Polym. Sci., 1991, 16(5): 695

    Article  Google Scholar 

  29. Xing, Q., Dong, X., Li, R.B., Yang, H.J., Han, C.C. and Wang, D.J., Polymer, 2013, 54(21): 5965

    Article  CAS  Google Scholar 

  30. Li, Y. and Shimizu, H., Macromol. Biosci., 2007, 7(7): 921

    Article  CAS  Google Scholar 

  31. Feng, F. and Ye, L., J. Appl. Polym. Sci., 2011, 119(5): 2778

    Article  CAS  Google Scholar 

  32. Feng, F., Zhao, X. and Ye, L., J. Macromol. Sci., B, 2011, 50(8): 1500

    Article  CAS  Google Scholar 

  33. McKiernan, R.L., Heintz, A.M., Hsu, S.L., Atkins, E.D.T., Penelle, J. and Gido, S.P., Macromolecules, 2002, 35(10): 6970

    Article  CAS  Google Scholar 

  34. Stehling, F.C., Huff, T., Speed, C.S. and Wissler, G., J. Appl. Polym. Sci., 1981, 26(8): 2693

    Article  CAS  Google Scholar 

  35. Jang, B.Z., Uhlmann, D.R. and Sande, J.B.V., J. Appl. Polym. Sci., 1985, 30(6): 2485

    Article  CAS  Google Scholar 

  36. Tien, Y.I. and Wei, K.H., Polymer, 2001, 42(7): 3213

    Article  CAS  Google Scholar 

  37. Avrami, M., J. Chem. Phys., 1939, 7(12): 1103

    Article  CAS  Google Scholar 

  38. Avrami, M., J. Chem. Phys., 1940, 8(2): 212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Dong  (董侠).

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 51403210), China Postdoctoral Science Foundation (No. 2014M550801) and President Fund of University of Chinese Academy of Sciences (No. Y35102CN00).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Li, Rb., Dong, X. et al. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: Effect of composition and hard segment ratio. Chin J Polym Sci 33, 1294–1304 (2015). https://doi.org/10.1007/s10118-015-1679-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1679-y

Keywords

Navigation