Skip to main content
Log in

In vivo degradation behavior of porous composite scaffolds of poly(lactide-co-glycolide) and nano-hydroxyapatite surface grafted with poly(L-lactide)

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The biodegradable porous composite scaffold, composed of poly(lactide-co-glycolide) (PLGA) and hydroxyapatite nanoparticles (n-HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) (g-HAP/PLGA), was fabricated using the solvent casting/particulate leaching method, and its in vivo degradation behavior was investigated by the intramuscular implantation in rabbits. The composite of un-grafted n-HAP/PLGA and neat PLGA were used as controls. The scaffolds had interconnected pore structures with average pore sizes between 137 μm and 148 μm and porosities between 83% and 86%. There was no significant difference in the pore size and porosity among the three scaffolds. Compared with n-HAP/PLGA, the thermo-degradation temperature (T c) of g-HAP/PLGA decreased while its glass transition temperature (T g) increased. The weight change, grey value analysis of radiographs and SEM observation showed that the composite scaffolds of g-HAP/PLGA and n-HAP/PLGA showed slower degradation and higher mineralization than the pure PLGA scaffold after the intramuscular implantation. The rapid degradation of PLGA, g-HAP/PLGA and n-HAP/PLGA occurred at 8–12 weeks, 12–16 weeks and 16–20 weeks, respectively. Compared with n-HAP/PLGA, g-HAP/PLGA showed an improved absorption and biomineralization property mostly because of its improved distribution of HAP nanoparticles. The levels of both calcium and phosphorous in serum and urine could be affected to some extent at 3–4 weeks after the implantation of g-HAP/PLGA, but the biochemical detection of serum AST, ALT, ALP, and GGT as well as BUN and CRE showed no obvious influence on the functions of liver and kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamai, N., Myoui, A., Kudawara, I., Ueda, T. and Yoshikawa, H., J. Orthop. Sci., 2010, 15: 560

    Article  CAS  Google Scholar 

  2. Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M. and Nakamura, T., Biomaterials, 2000, 21: 889

    Article  CAS  Google Scholar 

  3. Mate-Sanchez, de.Val. J.E., Mazon, P., Guirado, J.L., Ruiz, RA., Ramirez Fernandez, M.P. and Negri, B., J. Biomed. Mater. Res A., 2012, 100A: 3446

    Article  CAS  Google Scholar 

  4. Zhang, C.Y., Lu, H., Zhuang, Z., Wang, X.P. and Fang, Q.F., J. Mater. Sci. Mater. Med., 2010, 21: 3077

    Article  CAS  Google Scholar 

  5. Lv, Q., Nair, L. and Laurencin, C.T., J. Biomed. Mater. Res A., 2009, 91: 679

    Article  CAS  Google Scholar 

  6. Cui, Y., Liu, Y., Jing, X., Zhang, P. and Chen, X., Acta Biomater., 2009, 5: 2680

    Article  CAS  Google Scholar 

  7. Kim, S.S. Sun, Park, M., Jeon, O., Yong, C.C. and Kim, B.S., Biomaterials, 2006, 27: 1399

    Article  CAS  Google Scholar 

  8. Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X. and Jing, X., J. Biomed. Mater. Res A., 2007, 81: 515

    Article  CAS  Google Scholar 

  9. Vasita, R., Shanmugam, K. and Katti, D.S., Polym. Degrad. Stab., 2010, 95: 1605

    Article  CAS  Google Scholar 

  10. Xie, X.H., Wang, X.L, Zhang, G., He, Y.X., Wang, X.H. and Liu, Z., Biomed. Mater., 2010, 5: 054109

    Article  CAS  Google Scholar 

  11. Blaker, J.J., Nazhat, S.N., Maquet, V. and Boccaccini, A.R., Acta Biomater., 2011, 7: 829

    Article  CAS  Google Scholar 

  12. Mistry, A.S., Pham, Q.P., Schouten, C., Yeh, T., Christenson, E.M. and Mikos, A.G., J. Biomed. Mater. Res A, 2010, 92: 451

    Google Scholar 

  13. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S. and Kenny, J.M., Polym. Degrad. Stab., 2010, 95: 2126

    Article  CAS  Google Scholar 

  14. Guarino, V., Taddei, P., Di Foggia, M., Fagnano, C., Ciapetti, G. and Ambrosio, L., Tissue Eng. Part A., 2009, 15: 3655

    Article  CAS  Google Scholar 

  15. Delabarde, C., Plummer, C.J.G., Bourban, P.E. and Manson, J.A.E., Polym. Degrad. Stab., 2011, 96: 595

    Article  CAS  Google Scholar 

  16. Hong, Z.K., Zhang, P.B., He, C.L., Qiu, X.Y., Liu, A.X. and Chen, L., Biomaterials, 2005, 26: 6296

    Article  CAS  Google Scholar 

  17. Zhang, P.B., Hong, Z.K., Yu, T., Chen, X.S. and Jing, X.B., Biomaterials, 2009, 30: 58

    Article  CAS  Google Scholar 

  18. Hong, Z.K., Qiu, X.Y., Sun, J.R., Deng, M.X., Chen, X.S. and Jing, X.B., Polymer, 2004, 45: 6699

    Article  CAS  Google Scholar 

  19. Zhang, R.Y. and Ma, P.X., J. Biomed. Mater. Res., 1999, 44: 446

    Article  CAS  Google Scholar 

  20. Xu, Y., Zhang, D., Wang, Z.L., Gao, Z.T., Zhang, P.B. and Chen, X.S., Chinese J. Polym. Sci., 2011, 29: 215

    Article  CAS  Google Scholar 

  21. Pant, H.R., Neupane, M.P., Pant, B., Panthi, G., Oh, H.J. and Lee, M.H., Colloids. Surf. B. Biointerfaces, 2011, 88: 587

    Article  CAS  Google Scholar 

  22. Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P. and Langer, R., J. Biomed. Mater Res., 1993, 27: 183

    Article  CAS  Google Scholar 

  23. Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R. and Winslow, D.N., Polymer, 1994, 35: 1068

    Article  CAS  Google Scholar 

  24. Chen, G.P., Ushida, T. and Tateishi, T., Mat. Sci. Eng C-Bio S., 2001, 17: 63

    Article  Google Scholar 

  25. Zhang, P., Wu, H., Lu, Z., Deng, C., Hong, Z. and Jing, X., Biomacromolecules, 2011, 12: 2667

    Article  CAS  Google Scholar 

  26. Azevedo, H.S., Gama, F.M. and Reis, R.L., Biomacromolecules, 2003, 4: 1703

    Article  CAS  Google Scholar 

  27. Dagang, G., Kewei, X. and Yong, H., J. Biomed. Mater. Res. A., 2008, 86: 947

    Article  CAS  Google Scholar 

  28. Adachi, T., Osako, Y., Tanaka, M., Hojo, M. and Hollister, S.J., Biomaterials, 2006, 27: 3964

    Article  CAS  Google Scholar 

  29. Ronca, A., Ambrosio, L. and Grijpma, D.W., Acta Biomater., 2013, 9: 5989

    Article  CAS  Google Scholar 

  30. Lu, J.X., Flautre B., Anselme, K., Hardouin, P., Gallur, A. and Descamps, M., J. Mater. Sci. Mater. Med., 1999, 10: 111

    Article  CAS  Google Scholar 

  31. Bai, F., Zhang, J., Wang, Z., Lu, J., Chang, J., Liu, J., Meng, G. and Dong, X., Biomed. Mater., 2011, 6: 015007

    Article  CAS  Google Scholar 

  32. Boger, R.H., Palliat. Med., 2006, 20Suppl 1: s17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-guo Liu  (刘建国) or Pei-biao Zhang  (章培标).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 51273081, 51103149 and 51273195), the Project of International Cooperation from the Ministry of Science and Technology of China (No. S2013GR04340), and the Major Project of Science and Technology of Jilin Province (20130201005GX).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Yf., Liu, Jg., Wang, Zl. et al. In vivo degradation behavior of porous composite scaffolds of poly(lactide-co-glycolide) and nano-hydroxyapatite surface grafted with poly(L-lactide). Chin J Polym Sci 32, 805–816 (2014). https://doi.org/10.1007/s10118-014-1454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-014-1454-5

Keywords

Navigation