Skip to main content
Log in

Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Class imbalance occurs when data elements are unevenly distributed among classes, which poses a challenge for classifiers. The core focus of the research community has been on binary-class imbalance, although there is a recent trend toward the general case of multi-class imbalanced data. The IFROWANN method, a classifier based on fuzzy rough set theory, stands out for its performance in two-class imbalanced problems. In this paper, we consider its extension to multi-class data by combining it with one-versus-one decomposition. The latter transforms a multi-class problem into two-class sub-problems. Binary classifiers are applied to these sub-problems, after which their outcomes are aggregated into one prediction. We enhance the integration of IFROWANN in the decomposition scheme in two steps. Firstly, we propose an adaptive weight setting for the binary classifier, addressing the varying characteristics of the sub-problems. We call this modified classifier IFROWANN-\({{\mathcal {W}}_{\mathrm{IR}}}\). Second, we develop a new dynamic aggregation method called WV–FROST that combines the predictions of the binary classifiers with the global class affinity before making a final decision. In a meticulous experimental study, we show that our complete proposal outperforms the state-of-the-art on a wide range of multi-class imbalanced datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If the classifier provides both confidence degrees, one must ensure that they are normalized such that \(r_{ij} + r_{ji} = 1\).

References

  1. Abdi L, Hashemi S (2016) To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans Knowl Data Eng 28(1):238–251

    Article  Google Scholar 

  2. Alshomrani S, Bawakid A, Shim S, Fernández A, Herrera F (2015) A proposal for evolutionary fuzzy systems using feature weighting: dealing with overlapping in imbalanced datasets. Knowl Based Syst 73:1–17

    Article  Google Scholar 

  3. Barandela R, Sánchez J, García V, Rangel E (2003) Strategies for learning in class imbalance problems. Pattern Recog 36(3):849–851

    Article  Google Scholar 

  4. Batista G, Prati R, Monard MC (2004) A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explor 6(1):20–29

    Article  Google Scholar 

  5. Britto AS Jr, Sabourin R, de Oliveira LES (2014) Dynamic selection of classifiers—a comprehensive review. Pattern Recog 47(1):3665–3680

    Article  Google Scholar 

  6. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  7. Chen Y (2016) An empirical study of a hybrid imbalanced-class DT–RST classification procedure to elucidate therapeutic effects in uremia patients. Med Biol Eng Comput 54(6):983–1001

    Article  Google Scholar 

  8. Cornelis C, Verbiest N, Jensen R (2010) Ordered weighted average based fuzzy rough sets. In: Yu J, Greco S, Lingras P, Wang G, Skowron A (eds) Rough set and knowledge technology. Springer, Berlin, pp 78–85

    Chapter  Google Scholar 

  9. D’eer L, Verbiest N, Cornelis C, Godo L (2015) A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis. Fuzzy Sets Syst 275:1–38

    Article  MathSciNet  MATH  Google Scholar 

  10. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  11. Domingos P (1999) MetaCost: a general method for making classifiers cost—sensitive. In: Fayyad U, Chaudhuri S, Madigan D (eds) Proceedings of the 5th international conference on knowledge discovery and data mining (KDD’99). ACM, New York, pp 155–164

  12. Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209

    Article  MATH  Google Scholar 

  13. Fei B, Liu J (2006) Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Trans Neural Netw 17(3):696–704

    Article  MathSciNet  Google Scholar 

  14. Fernández A, Calderon M, Barrenechea E, Bustince H, Herrera F (2010a) Solving multi-class problems with linguistic fuzzy rule based classification systems based on pairwise learning and preference relations. Fuzzy Sets Syst 161(23):3064–3080

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández A, García S, Luengo J, Bernado-Mansilla E, Herrera F (2010b) Genetics-based machine learning for rule induction: state of the art, taxonomy and comparative study. IEEE Trans Evol Comput 14(6):913–941

    Article  Google Scholar 

  16. Fernández A, López V, Galar M, Del Jesus MJ, Herrera F (2013) Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl Based Syst 42:97–110

    Article  Google Scholar 

  17. Friedman JH (1996) Another approach to polychotomous classification. Tech rep, Department of Statistics, Stanford University. http://www-stat.stanford.edu/~jhf/ftp/poly.ps.Z

  18. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  19. Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Binary Decomposition Methods for Multipartite Ranking. In: Buntine W, Grobelnik M, Mladenić D, Shawe-Taylor J (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2009. Lecture Notes in Computer Science, vol 5781. Springer, Berlin, Heidelberg

  20. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2011) An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recog 44(8):1761–1776

    Article  Google Scholar 

  21. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2013) Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recog 46(12):3412–3424

    Article  Google Scholar 

  22. Galar M, Fernández A, Barrenechea E, Herrera F (2015) DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems. Pattern Recog 48(1):28–42

    Article  Google Scholar 

  23. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2016) Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf Sci 354:178–196

    Article  Google Scholar 

  24. Gao X, Chen Z, Tang S, Zhang Y, Li J (2016) Adaptive weighted imbalance learning with application to abnormal activity recognition. Neurocomputing 173:1927–1935

    Article  Google Scholar 

  25. Gao Z, Zhang L, Chen M, Hauptmann A, Zhang H, Cai A (2014) Enhanced and hierarchical structure algorithm for data imbalance problem in semantic extraction under massive video dataset. Multimed Tools Appl 68(3):641–657

    Article  Google Scholar 

  26. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  27. García V, Mollineda RA, Sánchez JS (2008) On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal Appl 11(3–4):269–280

    Article  MathSciNet  Google Scholar 

  28. Haixiang G, Yijing L, Yanan L, Xiao L, Jinling L (2016) BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification. Eng Appl Artifl Intell 49:176–193

    Article  Google Scholar 

  29. Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45(2):171–186

    Article  MATH  Google Scholar 

  30. Hastie T, Tibshirani R (1998) Classification by pairwise coupling. Ann Stat 26(2):451–471

    Article  MathSciNet  MATH  Google Scholar 

  31. He H, Garcia E (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

  32. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2): 65–70

  33. Huhn J, Hüllermeier E (2009) FR3: a fuzzy rule learner for inducing reliable classifiers. IEEE Trans Fuzzy Syst 17(1):138–149

    Article  Google Scholar 

  34. Hüllermeier E, Brinker K (2008) Learning valued preference structures for solving classification problems. Fuzzy Sets Syst 159(18):2337–2352

    Article  MathSciNet  MATH  Google Scholar 

  35. Hüllermeier E, Vanderlooy S (2010) Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting. Pattern Recog 43(1):128–142

    Article  MATH  Google Scholar 

  36. Jensen R, Cornelis C (2011) Fuzzy-rough nearest neighbour classification and prediction. Theor Comput Sci 412(42):5871–5884

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuncheva L, Bezdek J, Duin R (2001) Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recog 34(2):299–314

    Article  MATH  Google Scholar 

  38. Liu B, Hao Z, Yang X (2007) Nesting algorithm for multi-classification problems. Soft Comput 11(4):383–389

    Article  MATH  Google Scholar 

  39. Liu B, Hao Z, Tsang ECC (2008) Nesting one-against-one algorithm based on SVMs for pattern classification. IEEE Trans Neural Netw 19(12):2044–2052

    Article  Google Scholar 

  40. López V, Fernández A, Moreno-Torres JG, Herrera F (2012) Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst Appl 39(7):6585–6608

    Article  Google Scholar 

  41. López V, Fernández A, Del Jesus M, Herrera F (2013a) A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl Based Syst 38:85–104

    Article  Google Scholar 

  42. López V, Fernández A, García S, Palade V, Herrera F (2013b) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141

    Article  Google Scholar 

  43. López V, Fernández A, Herrera F (2014) On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed. Inf Sci 257:1–13

    Article  Google Scholar 

  44. Lorena AC, Carvalho AC, Gama JM (2008) A review on the combination of binary classifiers in multiclass problems. Artif Intell Rev 30(1–4):19–37

    Article  Google Scholar 

  45. Mahalanobis P (1936) On the generalized distance in statistics. Proc Natl Inst Sci (Calcutta) 2:49–55

    MATH  Google Scholar 

  46. Martínez-Munoz G, Hernández-Lobato D, Suárez A (2009) An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans Pattern Anal Mach Intellig 31(2):245–259

    Article  Google Scholar 

  47. Moreno-Torres JG, Sáez JA, Herrera F (2012) Study on the impact of partition-induced dataset shift on-fold cross-validation. IEEE Trans Neural Netw Learn Syst 23(8):1304–1312

    Article  Google Scholar 

  48. Orriols-Puig A, Bernado-Mansilla E (2009) Evolutionary rule-based systems for imbalanced datasets. Soft Comput 13(3):213–225

    Article  Google Scholar 

  49. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356

    Article  MATH  Google Scholar 

  50. Platt JC, Cristianini N, Shawe-Taylor J (2000) Large margin DAGs for multiclass classification. In: Solla S, Leen T, Müller K (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 547–553

    Google Scholar 

  51. Ramentol E, Vluymans S, Verbiest N, Caballero Y, Bello R, Cornelis C, Herrera F (2015) IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Trans Fuzzy Syst 23(5):1622–1637

    Article  Google Scholar 

  52. Razakarivony S, Jurie F (2016) Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commun Image Represent 34:187–203

    Article  Google Scholar 

  53. Rokach L (2016) Decision forest: twenty years of research. Inf Fusion 27:111–125

    Article  Google Scholar 

  54. Sáez JA, Luengo J, Stefanowski J, Herrera F (2015) SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf Sci 291:184–203

    Article  Google Scholar 

  55. Sun Y, Wong AKC, Kamel MS (2009) Classification of imbalanced data: a review. Int J Pattern Recog Artif Intell 23(4):687–719

    Article  Google Scholar 

  56. Verbiest N, Ramentol E, Cornelis C, Herrera F (2014) Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Appl Soft Comput 22:511–517

    Article  Google Scholar 

  57. Villar P, Fernández A, Carrasco R, Herrera F (2012) Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets. Int J Uncertain Fuzz 20(03):369–397

    Article  MATH  Google Scholar 

  58. Vluymans S, D’eer L, Saeys Y, Cornelis C (2015) Applications of fuzzy rough set theory in machine learning: a survey. Fundam Inform 142(1–4):53–86

    Article  MathSciNet  MATH  Google Scholar 

  59. Vluymans S, Sánchez Tarragó D, Saeys Y, Cornelis C, Herrera F (2016) Fuzzy rough classifiers for class imbalanced multi-instance data. Pattern Recog 53:36–45

    Article  Google Scholar 

  60. Vriesmann LM, Britto AS Jr, Oliveira LES, Koerich AL, Sabourin R (2015) Combining overall and local class accuracies in an oracle-based method for dynamic ensemble selection. In: Proceedings of the 2015 international joint conference on neural networks (IJCNN). IEEE, pp 1–7

  61. Wang S, Yao X (2012) Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern Part B 42(4):1119–1130

    Article  Google Scholar 

  62. Wang S, Chen H, Yao X (2010) Negative correlation learning for classification ensembles. In: Proceedings of the 2010 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

  63. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  64. Woods K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19:405–410

    Article  Google Scholar 

  65. Wu TF, Lin CJ, Weng RC (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5:975–1005

    MathSciNet  MATH  Google Scholar 

  66. Yager R (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 18(1):183–190

    Article  MathSciNet  MATH  Google Scholar 

  67. Yijing L, Haixiang G, Xiao L, Yanan L, Jinling L (2016) Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl Based Syst 94:88–104

    Article  Google Scholar 

  68. Yu H, Hong S, Yang X, Ni J, Dan Y, Qin B (2013) Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers. BioMed Res Int 2013:1–13

  69. Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    Article  MATH  Google Scholar 

  70. Zhang Z, Krawczyk B, Garcìa S, Rosales-Pérez A, Herrera F (2016) Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl Based Syst 106:251–263

    Article  Google Scholar 

  71. Zhao X, Li X, Chen L, Aihara K (2008) Protein classification with imbalanced data. Proteins: Struct Funct Bioinform 70(4):1125–1132

    Article  Google Scholar 

  72. Zhou Z, Liu X (2010) On multi-class cost-sensitive learning. Comput Intell 26(3):232–257

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Sarah Vluymans is funded by the Special Research Fund (BOF) of Ghent University. This work was partially supported by the Spanish Ministry of Science and Technology under the Projects TIN2014-57251-P and TIN2015-68454-R; the Andalusian Research Plans P11-TIC-7765 and P12-TIC-2958. Yvan Saeys is an ISAC Marylou Ingram Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Vluymans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vluymans, S., Fernández, A., Saeys, Y. et al. Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl Inf Syst 56, 55–84 (2018). https://doi.org/10.1007/s10115-017-1126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1126-1

Keywords

Navigation