Skip to main content
Log in

Integral Representation Formulas Related to the Lamé—Navier System

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The paper provides integral representations for solutions to a certain first order partial differential equation natural arising in the factorization of the Lamé—Navier system with the help of Clifford analysis techniques. These representations look like in spirit to the Borel—Pompeiu and Cauchy integral formulas both in three and higher dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, J. R.: Solid Mechanics and Its Applications, Springer, Berlin, 2003

    Google Scholar 

  2. Bock, S., Gürlebeck, K., Legatiuk, D., et al.: ψ-hyperholomorphic functions and a Kolosov—Muskhelishvili formula. Math. Methods Appl. Sci., 38(18), 5114–5123 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bock, S., Gürlebeck, K.: On a spatial generalization of the Kolosov—Muskhelishvili formulae. Math. Methods Appl. Sci., 32, 223–240 (2009)

    Article  MathSciNet  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in Mathematics, Vol. 76, Pitman (Advanced Publishing Program), Boston, 1982

    MATH  Google Scholar 

  5. Brown, R. M., Mitrea, I.: The mixed problem for the Lamé system in a class of Lipschitz domains. J. Differential Equations, 246(7), 2577–2589 (2009)

    Article  MathSciNet  Google Scholar 

  6. Dahlberg, B. E. J., Kenig, C. E., Verchota, G. C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J., 57(3), 795–818 (1988)

    Article  MathSciNet  Google Scholar 

  7. Fung, Y. C.: Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1965

    Google Scholar 

  8. Gürlebeck, K., Nguyen, H. M.: ψ-hyperholomorphic functions and an application to elasticity problems. AIP Conference Proceedings, 1648(1), 440005 (2015)

    Article  Google Scholar 

  9. Gürlebeck, K., Sprössig, W.: Quaternionic analysis and elliptic boundary value problems. International Series of Numerical Mathematics, 89, Birkhäuser Verlag, Basel, 1990

    Book  Google Scholar 

  10. Grigoriev, Y.: Regular quaternionic functions and their applications in three-dimensional elasticity, In: XXIV ICTAM, 21–26, August 2016, Montreal, Canada

  11. Grigoriev, Y.: Three-dimensional quaternionic analogue of the Kolosov—Muskhelishvili formulae. In: Hypercomplex analysis: new perspectives and applications, 145–166, Trends Math., Birkhäuser/Springer, Cham, 2014

    Google Scholar 

  12. Kenig, C. E.: Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains. Goulaouic—Meyer—Schwartz seminar, 1983–1984, Exp. No. 21, 13 pp., École Polytech., Palaiseau, 1984

    Google Scholar 

  13. Kupradze, V. D.: Potential Methods in the Theory of Elasticity. Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1965

  14. Kupradze, V. D., Gegelia, T. G., Basheleishvili, M. O. et al.: Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Translated from the second Russian edition. Edited by V. D. Kupradze. North-Holland Series in Applied Mathematics and Mechanics, Vol. 25. North-Holland Publishing Co., Amsterdam-New York, 1979

  15. Lamé, G.: Sur les surfaces isothermes dans les corps homogenes en equilibre de temprature. Journal de Mathématiques Pures et Appliquées, 2, 147–188 (1837)

    Google Scholar 

  16. Liu, L. W., Hong, H. K.: Clifford algebra valued boundary integral equations for three-dimensional elasticity. Appl. Math. Model., 54, 246–267 (2018)

    Article  MathSciNet  Google Scholar 

  17. Malonek, H., Peña-Peña, D., Sommen, F.: A Cauchy—Kowalevski theorem for inframonogenic functions. Math. J. Okayama Univ., 53, 167–172 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Malonek, H., Peña-Peña, D., Sommen, F.: Fischer decomposition by inframonogenic functions. CUBO A Mathematical Journal, 12(2), 189–197 (2010)

    Article  MathSciNet  Google Scholar 

  19. Malvern, L. E.: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Upper Saddle River, NJ, 1969

    Google Scholar 

  20. Mayboroda, S., Mitrea, M.: The Poisson problem for the Lame system on low-dimensional Lipschitz domains. In: Integral Methods in Science and Engineering, Birkhäuser, Boston, MA, 2006, 137–160

    Chapter  Google Scholar 

  21. Mora Corral, C.: Quasistatic evolution of cavities in nonlinear elasticity. SIAM J. Math. Anal., 46(1), 53271 (2014)

    Article  MathSciNet  Google Scholar 

  22. Moreno-García, A., Moreno-García, T., Abreu-Blaya, R., et al.: A Cauchy integral formula for inframonogenic functions in Clifford analysis. Adv. Appl. Clifford Algebras, 27(2), 1147–1159 (2017)

    Article  MathSciNet  Google Scholar 

  23. Moreno-García, A., Moreno-García, T., Abreu-Blaya, R., et al.: Inframonogenic functions and their applications in three dimensional elasticity theory. Math. Meth. Appl. Sci., 41(10), 3622–3631 (2018)

    Article  Google Scholar 

  24. Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands, 1963

    MATH  Google Scholar 

  25. Nguyen, H. M.: ψ-hyperholomorphic function theory in ℝ3: Geometric Mapping Properties and Applications. (Habilitation Thesis), Fakultat Bauingenieurwesen der Bauhaus-Universitat. Weimar. e-pub.uni-weimar.de, 2015

    Google Scholar 

  26. Niyozov, I. E., Makhmudov, O. I.: The Cauchy problem of the moment elasticity theory in ℝm. Russian Mathematics (Iz. VUZ), 58(2), 240 (2014)

    MathSciNet  Google Scholar 

  27. Sadd, M. H.: Elasticity: Theory, Applications and Numerics, Elsevier, Oxford, 2005

    Google Scholar 

  28. Sneddon, I. N.: Book Review: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Bull. Amer. Math. Soc. (N.S.), 3(2), 870–878 (1980)

    Article  MathSciNet  Google Scholar 

  29. Shen, Z. W.: Boundary value problems for parabolic Lame systems and a nonstationary linearized system of Navier—Stokes equations in Lipschitz cylinders. Amer. J. Math., 113(2), 293–373 (1991)

    Article  MathSciNet  Google Scholar 

  30. Sokolnikoff, I. S.: Mathematical Theory of Elasticity, McGraw-Hill, New York, 1958

    Google Scholar 

  31. Weisz-Patrault, D., Bock, S., Gürlebeck, K.: Three-dimensional elasticity based on quaternion-valued potentials. Int. J. Solids Struct., 51(19–20), 3422–3430 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Abreu-Blaya.

Additional information

Supported in part by a grant from Agencia Estatal de Investigacin (PID2019-106433GB-I00/AEI/10.13039/50110 0 011033) Spain; the second author was partially supported by Instituto Politécnico Nacional in the framework of SIP programs (SIP20180225)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-Blaya, R., Bory-Reyes, J., Herrera-Peláez, M.A. et al. Integral Representation Formulas Related to the Lamé—Navier System. Acta. Math. Sin.-English Ser. 36, 1341–1356 (2020). https://doi.org/10.1007/s10114-020-9332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-020-9332-2

Keywords

MR(2010) Subject Classification

Navigation