Skip to main content
Log in

A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix-Raviart element and extended Crouzeix-Raviart element, of the Stokes eigenvalue problem. With the technique of Helmholtz decomposition, we first give out a posteriori error estimator and prove it as the global upper bound and local lower bound of the approximation error. Then, by deleting a jump term in the indicator, another simpler but equivalent indicator is obtained. Some numerical experiments are provided to verify our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano, M. G., Durán, R. G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal., 17, 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Armentano, M., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math., 58, 593–601 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement, In Scientific Computing, pages 3–17, IMACS/North-Holland Publishing Company, Amsterdam, 1983

    Google Scholar 

  4. Babuška, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp., 52, 275–297 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math., 97(2), 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, Springer, New York, 1994

    Book  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991

    Book  MATH  Google Scholar 

  8. Ciarlet, P.: The Finite Element Method for Elliptic Problem, North-holland Amsterdam, 1978

    Google Scholar 

  9. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer., 9, 77–84 (1975)

    MATH  Google Scholar 

  10. Crouzeix, M., Raviart, P.: Conforming and nonconformingfinite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. Ser. Rouge, 7(3), 33–76 (1973)

    MathSciNet  Google Scholar 

  11. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math., 110, 313–355 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dari, E., Durán R., Padra, C.: Error estiamators for nonconforming finite element approximations of the Stokes problem. Math. Comp., 64, 1017–1033 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal., 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J., 57, 769–793 (1998)

    Article  MathSciNet  Google Scholar 

  15. Grisvard, P.: Singularities in Boundary Problems, MASSON and Springer-Verlag, 1985

    Google Scholar 

  16. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986

    Book  MATH  Google Scholar 

  17. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of ellipic eigenvalue problems. Adv. Comput. Math., 15, 107–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hu, J., Huang, Y., Lin, Q.: The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods, http://arxiv.org/PS_cache/arxiv/pdf/1112/1112.1145v1.pdf, 2011

    Google Scholar 

  19. Lin, Q., Xie, H., Luo, F., et al.: Stokes eigenvalue approximation from below with nonconforming mixed finite element methods (in Chinese). Math. Practice Theory, 19, 157–168 (2010)

    MathSciNet  Google Scholar 

  20. Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Meth. PDE, 25, 244–257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mercier, B., Osborn, J., Rappaz J., et al.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput., 36(154), 427–453 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mitchell, W.: A comparison of adaptive refinement techniques for elliptic problems. ACM Transactions on Mathematical Software (TOMS) Archive, 15(4), 326–347 (1989)

    Article  MATH  Google Scholar 

  23. Osborn, J.: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal., 13, 185–197 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rivara, M.: Design and data structure for fully adaptive, multigrid finite element software. ACM Trans. Math. Soft., 10, 242–264 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rivara, M.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal., 21, 604–613 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Russo, A., Alonso, A.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comp. Math. Appl., 62, 4100–4117 (2011)

    Article  MATH  Google Scholar 

  27. Sewell, E.: Automatic generation of triangulations for piecewise polynomial approximation. In Ph. D. dissertation. Purdue Univ., West Lafayette, Ind., 1972

    Google Scholar 

  28. Verfürth, R.: A posteriori error estimators for the Stokes equations II, non-conforming discretizations. Numer. Math., 60, 235–249 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley, Teubner, 1996

    MATH  Google Scholar 

  30. Yang, Y. D., Li, Q., Li, S. R.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math., 59, 2388–2401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang, Y. D., Lin, F. B., Zhang, Z. M.: N-simplex Crouzeix-Raviart element for the second-order elliptic eigenvalue problems. Int. J. Numer. Anal. Model., 6(4), 615–626 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Hui Jia.

Additional information

Supported by National Science Foundation of China (NSFC 91330202, 11001259, 11371026, 11201501, 11031006, 11071265, 2011CB309703, 2010DFR00700), the National Center for Mathematics and Interdisciplinary Science, CAS, the President Foundation of AMSS-CAS and the Program for Innovation Research in Central University of Finance and Economics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S.H., Luo, F.S. & Xie, H.H. A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem. Acta. Math. Sin.-English Ser. 30, 949–967 (2014). https://doi.org/10.1007/s10114-014-3121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-014-3121-8

Keywords

MR(2010) Subject Classification

Navigation