Skip to main content

Advertisement

Log in

Soil organic carbon storage and contribution of management strategies to the “4 per 1000” target in a wet savanna, Côte d’Ivoire

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Identifying and scaling up agricultural practices that promote atmospheric carbon transfer into the soil are keys to tackle climate change. A study was carried out in Central Côte d’Ivoire (West Africa) to assess soil organic carbon (SOC) storage and its edaphic constraints under diverse fallow management options. Trials were conducted at two locations—Ahérémou-II village and near the Lamto reserve. The impact of long-term Chromolaena odorata (Asteraceae) fallow was assessed relative to the native savanna. Those of short-term herbaceous (Mucuna pruriens, Lablab purpureus, Pueraria phaseoloides and a mixture of these three) and shrub (Cajanus cajan) legume (Fabaceae) fallows were assessed relative to the time of sowing (T0) or relative to C. odorata fallow. In Lamto, the legumes were grown simultaneously at two sites side-by-side—a native shrub savanna (“savanna”) and a 17-year C. odorata fallow (“fallow”)—with contrasting soil fertility levels. At both locations, SOC stock was higher in C. odorata than in the natural savanna, the increase being restricted to the 0–0.1-m depth. SOC accumulation rates at 0–0.4 m depth were 0.46% year−1 and 1.87% year−1 in the Lamto 17-year and Ahérémou-II 10-year C. odorata fallows, respectively. In Ahérémou-II, L. purpureus rather than C. cajan significantly increased SOC stock (0–0.1-m depth) relative to C. odorata (2-year fallows). In Lamto, SOC stock significantly increased in all legume plots (0–0.1-m depth) relative to T0, particularly the mixture (14.1% year−1) and L. purpureus (13.7% year−1). SOC storage was not found to be influenced by legume biomass yield nor by legume species x site interaction, although it was greater at the more fertile “fallow” than at the “savanna” sites. That increase was positively linked to the initial SOC, total N, clay + fine silt, Mg2+ and Ca2+ concentrations, with the latter exhibiting the strongest influence. This study highlights the agronomic and climatic benefits C. odorata may provide in savanna environment despite the inimical attributes linked to its invader status. Mixed legume fallowing should be further encouraged in Côte d’Ivoire and other West African coastal countries in the framework of the 4p1000 Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aigbedion-Atalor PO (2020) Weed or not a weed? Density, perceptions and management of Chromolaena odorata (Asteraceae) in West Africa: voices from Ghana. Weed Res 60:406–414. https://doi.org/10.1111/wre.12439

    Article  Google Scholar 

  • Aigbedion-Atalor PO, Adom M, Day MD, Uyi O, Egbon IN, et al (2019) Eight decades of invasion by Chromolaena odorata (Asteraceae) and its biological control in West Africa: the story so far. Biocontrol Sci Technol 29:12. https://doi.org/10.1080/09583157.2019.1670782

  • Akpa SIC, Odeh IOA, Bishop TFA, Hartemink AE, Amapu IY (2016) Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 271:202–215. https://doi.org/10.1016/j.geoderma.2016.02.021

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility, a handbook of methods, 2nd edn. CAB International, New York

    Google Scholar 

  • Azontonde A, Feller C, Ganry F, Remy JC (1998) Le mucuna et la restauration des propriétés d’un sol ferrallitique au sud du Bénin. Agriculture et développement 18:55–61. https://agritrop.cirad.fr/390388/

  • Barré P, Durand H, Chenu C, Meunier P, Montagne D, et al (2017) Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 285:50–56. https://doi.org/10.1016/j.geoderma.2016.09.029

  • Carsky RJ, Becker M, Hauser S (2001) Mucuna cover crop fallow systems: potential and limitations. In: Tian G, Ishida F, Keatinge D, Carsky R, Wendt J (eds) Sustaining Soil Fertility in West Africa. SSSA Special Publication 58, Madison, pp 111–135. https://doi.org/10.2136/SSSASPECPUB58.CH6

  • Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Lærke PE, Zhang Y, Luo Y, Hungate BA, Sinsabaugh RL, Jørgensen U (2020) Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Glob Change Biol 26:1944–1952. https://doi.org/10.1111/gcb.14986

    Article  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, et al (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8. http://www.nature.com/naturegeoscience

  • Damour G, Navas ML, Garnier E (2018) A revised trait-based framework for agroecosystems including decision rules. J Appl Ecol 55:12–24. https://doi.org/10.1111/1365-2664.12986

    Article  Google Scholar 

  • Diby NL, Hgaza VK, Tie BT, Assa A, Carsky R, et al (2009) Productivity of yams (Dioscorea spp.) as affected by soil fertility. J Anim Plant Sci 5:494–506. http://www.biosciences.elewa.org/JAPS

  • EFI (2013) Étude coûts-bénéfices de la REDD+ en Côte d’Ivoire et mobilisation des acteurs des grandes filières agricoles et forestières. Facilité UE REDD+, Institut européen de la forêt (EFI). http://www.euredd.efi.int › documents › Report+o...

  • Fan R, Du J, Liang A, Lou J, Li J (2020) Carbon sequestration in aggregates from native and cultivated soils as affected by soil stoichiometry. Biol Fertil Soils 56:1109–1120. https://doi.org/10.1007/s00374-020-01489-2

    Article  CAS  Google Scholar 

  • FIRCA (2015) Filières Fruitières, 10 p. https://firca.ci › 2020/03 › FRUIT-ET-TECHNO

  • Fofana B, Tamélokpo A, Wopereis MCS, Breman H, Mando A (2005) Nitrogen use efficiency by maize as affected by a Mucuna short fallow and P application in the coastal savanna of West Africa. Nutr Cycl Agroecosyst 71:227–237. https://doi.org/10.1007/s10705-004-5084-0

    Article  CAS  Google Scholar 

  • Franco ALC, Cherubin MR, Cerri CEP, Six J, Wall DH et al (2020) Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biol Biochem 150:107998. https://doi.org/10.1016/j.soilbio.2020.107998

  • Fujisaki K, Chevallier T, Chapuis-Lardy L, Albrecht A, Razafimbelo T, et al (2018) Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric Ecosyst Environ 259:147–158. https://doi.org/10.1016/j.agee.2017.12.008

  • Garcia-Franco N, Walter R, Wiesmeier M, Hurtarte LCC, Berauer BJ et al (2021) Biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils. Biol Fertil Soils 57:203–218. https://doi.org/10.1007/s00374-020-01518-0

  • Gbakatchetche H, Sanogo S, Camara M, Bouet A, Keli JZ (2010) Effet du paillage par des résidus de pois d’angole (cajanus cajan L.) sur le rendement du riz (oryza sativa) pluvial en zone forestière de Côte d’Ivoire. Agron Afr 22:131–137. https://www.ajol.info › aga › article › view

  • Gignoux J, Mordelet P, Menaut JC (2006) Biomass cycle and primary production. In: Abbadie L, Gignoux J, Le Roux X, Lepage M (eds) Lamto: structure, functioning and dynamics of a savanna ecosystem. Ecological studies, 179. Springer-Verlag, New York. 115−137. https://doi.org/10.1007/978-0-387-33857-6_7

  • Grinand C, Rajaonarivo A, Bernoux M, Pajot V, Brossard M, et al (2009) Estimation des stocks de carbone dans les sols de Madagascar. Etude et Gestion des Sols 16:23–33. http://afes.fr/egs.php

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. https://www.ipcc-nggip.iges.or.jp › ...

  • Kassi SPAY, Koné AW, Tondoh JE, Koffi BY (2017) Chromolaena odorata fallow-cropping cycles maintain soil carbon stocks and yam yield 40 years after conversion of native- to farm-land, implications for forest conservation. Agric Ecosyst Environ 247:298–307. https://doi.org/10.1016/j.agee.2017.06.044

    Article  Google Scholar 

  • Keli JZ, Omont H, Assiri AA, Boko KAM-C, Obouayeba S et al (2005) Associations culturales à base d’hévéa: Bilan de 20 années d’expérimentations en Côte d’Ivoire. Partie 1: comportement végétatif. Agron Afr 17:37–52. https://www.ajol.info › index.php › aga › article › view

  • Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98. https://doi.org/10.2307/177136

    Article  Google Scholar 

  • Koné AW, Edoukou EF, Gonnety JT, N’Dri ANA, Assémien LFE et al (2012a) Can the shrub Chromolaena odorata (Asteraceae) be considered as improving soil biology and plant nutrient availability? Agroforest Syst 85:233–245. https://doi.org/10.1007/s10457-012-9497-5

  • Koné AW, Edoukou FE, Orendo-Smith R, Tondoh EJ (2012b) Earthworms in Chromolaeana odorata (L.) King and Robinson (Asteraceae) fallows along a chronosequence: changes in community structure and identification of persistent and indicator species. Pedobiologia 55:193–201. https://doi.org/10.1016/j.pedobi.2012.02.001

    Article  Google Scholar 

  • Koné AW, Kassin EK, Ettien JBD, Konaté Z, Gnahoua GM (2020) Le carbone des sols des zones de forêts et de savanes en Côte d’Ivoire: impacts de Chromolaena odorata et des légumineuses. In: Chevallier T, Razafimbelo TM, Chapuis-Lardy L, Brossard M (Eds) Carbone des sols en Afrique. Impacts des usages des sols et des pratiques agricoles. FAO/IRD Editions, Rome/Marseille, pp 191–208. https://doi.org/10.4000/books.irdeditions.35072

  • Koné AW, Tondoh JE, Angui PKT, Bernhard-Reversat F, Loranger-Merciris G et al (2008) Is soil quality improvement by legume cover crops a function of the initial soil chemical characteristics? Nutr Cycl Agroecosyst 82:89–105. https://doi.org/10.1007/s10705-008-9172-4

  • Koné AW, Yao MK (2021) Soil microbial functioning and organic carbon storage: can complex timber tree stands mimic natural forests? J Environ Manage 283:112002. https://doi.org/10.1016/j.jenvman.2021.112002

    Article  CAS  Google Scholar 

  • Kouassi NA (2000) Utilisation des plantes de couverture comme substitution à la jachère pour la culture de la canne à sucre en Côte d’Ivoire. In: Floret Ch, Pontanier R (eds) La jachère en Afrique tropicale, vol 1. John Libbey Eurotext, Paris, pp 611–615

    Google Scholar 

  • Koutika L-S, Rainey HJ (2010) Chromolaena odorata in different ecosystems: weed or fallow plant? Appl Ecol Environ Res 8:131–142. http://www.ecology.uni-corvinus.hu

  • Koutouan FP, N’Guessan BC, Wandan EN, Ta bi GB (2017) Effet de la fertilisation phospho-potassique sur le rendement grainier et la qualité des semences de Cajanus cajan l. Millsp. sur un Ferrasol à Yamoussoukro, région Centre de la Côte d’Ivoire. Eur Sci J 13:7–20. https://doi.org/10.19044/esj.2017.v13n21p7

  • Lal R (2020) Food security impacts of the “4 per Thousand” initiative. Geoderma 374:114427. https://doi.org/10.1016/j.geoderma.2020.114427

    Article  Google Scholar 

  • Lavelle P (1978) Les vers de terre de la savane de Lamto (Côte d’Ivoire): Peuplements, populations et fonctions dans l’écosystème. PhD dissertation. University of Paris VI, France. https://www.sudoc.fr/00022684X

  • Maroun L (2017) Etude de la perception des mauvaises herbes et des espèces végétales exotiques par la population des milieux agricoles en Côte d’Ivoire, l’exemple de Chromolaena odorata. Master dissertation, Université de Gembloux. http://hdl.handle.net/2268.2/3070

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • N’Dri AB, Koné AW, Loukou SKK, Barot S, Gignoux J (2019) Carbon and nutrient losses through biomass burning, and links with soil fertility and yam (Dioscorea alata) production. Exp Agric 55:738–751. https://doi.org/10.1017/S0014479718000327

    Article  Google Scholar 

  • N’Dri AB, Soro TD, Gignoux J, Dosso K, Koné M, N’Dri JK, Koné NA, Barot S (2018) Season affects fire behavior in annually burned humid savanna of West Africa. Fire Ecol 14:5. https://doi.org/10.1186/s42408-018-0005-9

    Article  Google Scholar 

  • N’Goran KE, Kassin KE, Zohouri GP, Yoro GR (2012) Gestion améliorée de la jachère dans le système de culture à base d’igname par l’utilisation de légumineuse de couverture. J Appl Biosci 52:3716–3724. http://indexmedicus.afro.who.int

  • Obatolu CR, Agboola AA (1993) The potential of Siam weed (Chromolaena odorata) as a source of organic matter for soils in humid tropics. In: Mulongoy M, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley-Sayce Co, New York, pp 89–99

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison, pp 403–430

    Google Scholar 

  • Oorts K, Vanlauwe B, Merckx R (2003) Cation exchange capacity of organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agric Ecosyst Environ 100:161–171. https://doi.org/10.1016/S0167-8809(03)00190-7

    Article  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP et al  (2016) Climate-smart soils. Nature 532:49–57. https://doi.org/10.1038/nature17174

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Philippe H (1986) Une technique de lutte chimique contre Eupatorium odoratum (L.) pour les replantations de palmiers à huile. Oléagineux 41:263–267. https://agritrop.cirad.fr/399752/

  • Pingali PL (2012) Green revolution: impacts, limits and the path ahead. PNAS 109:12302–12308. https://doi.org/10.1073/pnas.0912953109

    Article  Google Scholar 

  • Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops - a meta-analysis. Agric Ecosyst Environ 200:33–41. https://doi.org/10.1016/j.agee.2014.10.024

    Article  CAS  Google Scholar 

  • Raji BA, Ogunwole JO (2006) Potential of soil carbon sequestration under various land use in the sub-humid and semi-arid savanna of Nigeria, Lessons from long term experiments. Int J Soil Sci 1:33–43. https://scialert.net/abstract/?doi=ijss.2006.33.43

  • Rumpel C, Amiraslani F, Chenu C, Cardenas MG, Kaonga M et al (2020) The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49:350–360. https://doi.org/10.1007/s13280-019-01165-2

  • Sanchez PA (2019) Properties and Management of Soils in the Tropics. In: Sanchez PA (ed) Properties and management of soils in the tropics, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316809785

  • Saputra DD, Sari RR, Hairiah K, Roshetko JM, Suprayogo D et al (2020) Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agrofor Syst 94:2261–2276. https://doi.org/10.1007/s10457-020-00548-9

  • Sauvadet M, Saj S, Freschet GT, Essobo J-D, Enock S et al (2020) Cocoa agroforest multifunctionality and soil fertility explained by shade tree litter traits. J Appl Ecol 57:476–487. https://doi.org/10.1111/1365-2664.13560

  • Schiefer J, Lair GJ, Lüthgens C, Wild EM, Steiner P et al (2018) The increase of soil organic carbon as proposed by the “4/1000 initiative” is strongly limited by the status of soil development - a case study along a substrate age gradient in Central Europe. Sci Total Environ 628–629:840–847. https://doi.org/10.1016/j.scitotenv.2018.02.008

  • Shackleton RT, Witt ABR, Nunda W, Richardson DM (2017) Chromolaena odorata (Siam weed) in eastern Africa: distribution and socio-ecological impacts. Biol Invasions 19:1285–1298. https://doi.org/10.1007/s10530-016-1338-4

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. https://doi.org/10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Slaats JJP (1995) Chromolaena odorata fallow in food cropping systems. An agronomic assessment in South-West Ivory Coast. PhD Dissertation, Université de Wageningen

  • Soro Y, N’Dri AB, Bakayoko A, Gignoux J (2018) Analyse de la végétation dans un écotone forêt-savane d’Afrique de l’Ouest dans un contexte de boisement des savanes. REB-PASRES 3:54–72

    Google Scholar 

  • Sousa Junior JGA, Cherubin MR, Oliveira BG, Cerri CEP, Cerri CC et al (2018) Three-year soil carbon and nitrogen responses to sugarcane straw management. Bioenerg Res 11:249–261. https://doi.org/10.1007/s12155-017-9892-x

  • Soussana J-F, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C et al (2019) Matching policy and science: rationale for the ‘4 per 1000 – soils for food security and climate’ Initiative. Soil Tillage Res 188:3–15. https://doi.org/10.1016/j.still.2017.12.002

  • Stewart CE, Plante AF, Paustian K, Conant RT, Six J (2008) Soil carbon saturation: linking concept and measurable carbon pools. Soil Sci Soc Am J 72:379–392. https://doi.org/10.2136/sssaj2007.0104

    Article  CAS  Google Scholar 

  • Timbilla JA, Zachariades C, Braimah H (2003) Biological control in IPM systems in Africa. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control and management of the alien invasive shrub, Chromolaena odorata in Africa. CABI Publishing, Wallingford, London, pp 145–160

    Google Scholar 

  • Torres-Sallan G, Creamer RE, Lanigan GJ, Reidy B, Byrne KA (2018) Effects of soil type and depth on carbon distribution within soil macroaggregates from temperate grassland systems. Geoderma 313:52–56. https://doi.org/10.1016/j.geoderma.2017.10.012

    Article  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S et al (2015) The contribution of agriculture, forestry and other Land use activities to global warming, 1990–2012. Glob Chang Biol 21:2655–2660. https://doi.org/10.1111/gcb.12865

  • Tully K, Sullivan C, Weil R, Sanchez P (2015) The state of soil degradation in sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability 7:6523–6552. https://doi.org/10.3390/su7066523

    Article  Google Scholar 

  • Vågen T-G, Lal R, Singh BR (2005) Soil carbon sequestration in sub-Saharan Africa: a review. Land Degrad Develop 16:53–71. https://doi.org/10.1002/ldr.644

    Article  Google Scholar 

  • Van Noordwijk M, Goverse T, Ballabio C, Banwart S, Bhattacharyya T et al (2014) Science, Management and Policy for Multiple Benefits. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon transition curves: reversal of land degradation through management of soil organic matter for multiple benefits Soil Carbon. Cabi, Wallingford, pp 26–46. https://doi.org/10.1079/9781780645322.0026

  • Veldkamp E, Marcus Schmidt M, Powers JS, Corre MD (2020) Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ 1:590–605. https://doi.org/10.1038/s43017-020-0091-5

    Article  Google Scholar 

  • Wiesmeier M, Mayer S, Burmeister J, Hübner R, Kögel-Knabner I (2020) Feasibility of the 4 per 1000 initiative in Bavaria: a reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 369:114333. https://doi.org/10.1016/j.geoderma.2020.114333

    Article  CAS  Google Scholar 

  • Yao MK, Koné AW, Otinga AN, Kassin EK, Tano Y (2021) Carbon and nutrient cycling in tree plantations vs natural forests: implication for an efficient cocoa agroforestry system in West Africa. Reg Environ Chang 21:44. https://doi.org/10.1007/s10113-021-01776-0

    Article  Google Scholar 

Download references

Funding

This work was funded by IFS (International Foundation for Science), CORAF/WECARD (West and Central African Council for Agricultural Research and Development) through the project “Sustainable soil–water-nutrient management under increasing climatic change and variability” and the French IRD through the PARRAF-CaSA network (Soil carbon for a sustainable agriculture in Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand W. Koné.

Additional information

Communicated by Lydie-Stella Koutika and accepted by Topical Collection Chief Editor Christopher Reyer.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regional management practices with positive effects on soil carbon to meet the goals of the 4p1000 initiative1000

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koné, A.W. Soil organic carbon storage and contribution of management strategies to the “4 per 1000” target in a wet savanna, Côte d’Ivoire. Reg Environ Change 22, 4 (2022). https://doi.org/10.1007/s10113-021-01861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-021-01861-4

Keywords

Navigation