Skip to main content

Advertisement

Log in

Renewable energy sources: conflicts and opportunities in a changing landscape

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Replacement of conventional energy sources with renewables such as solar panels and wind turbines requires adequate land. Impact assessments should be conducted to identify sites exhibiting least conflict with current and future land-uses and corresponding ecosystem services. We assessed the electricity potential and geographical distribution of wind turbines and solar panels for current land-use and under three Swiss land-change scenarios. The future scenario A2 with limited construction regulations, a liberalized market and more building surfaces increases the electricity potential of solar panels by 69% from 16.6 TWh (potential under current land-use and regulations) to a future 28.2 TWh. An increase of approximately 26% electricity potential from solar panels is expected for scenario B2 (regionalized economy) and the trend scenario. Wind-electricity potential could increase by 61% from 93 to 150 TWh under A2, and 29% under a B2 or trend scenario. The electricity potential for solar panels remains largely unaffected by conflicts with ecosystem services, but electricity production from wind could be reduced by as much as 98% due to conflicts with ecosystem services. Depending on the scenario used, low-conflict sites for solar panels and wind turbines could contribute between 85% (trend and B2 scenario) and >100% (A2 scenario) to the Swiss energy target of generating 25 TWh from new renewable energy sources by 2050. This includes expected technological developments. Positive impacts of sustainable energy production on regional economies are moderate and will not lead to strong changes in regional-economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Nature protection sites are not an exclusion criterion for scenario A2.

References

  • Akademien der Wissenschaften (2012) Lösungsansätze für die Schweiz im Konfliktfeld erneuerbarer Energien und Raumnutzung. Bern

  • Baumgartner D, Pütz M, Seidl I (2013) What kind of entrepreneurship drives regional development in European non-core regions? A literature review on empirical entrepreneurship research. Eur Plan Stud 21:1095–1127. doi:10.1080/09654313.2012.722937

    Article  Google Scholar 

  • BFS (2008) Eidgenössische Betriebszählung 2008, inklusive Land- und Forstwirtschaft. Neuenburg

  • BFS (2016a) Beherbergungsstatistik. https://www.bfs.admin.ch/bfs/de/home/statistiken/tourismus.gnpdetail.2016-0160.html. Accessed 26 Nov 2016

  • BFS (2016b) Population scenarios. https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/zukuenftige-entwicklung/schweiz-szenarien.html. Accessed 6 Dec 2016

  • Buchecker M, Kienast F, Degenhardt B, Widmer S, Moritzi M (2013) Naherholung räumlich erfassen. Merkblatt für die Praxis 51:1–8

    Google Scholar 

  • Calvert K, Mabee W (2015) More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl Geogr 56:209–221. doi:10.1016/j.apgeog.2014.11.028

    Article  Google Scholar 

  • Cattin R, Schaffner B, Humar-Mägli T, Albrecht S, Remjund J, Klauser D, Engerl JJ (2012) Energiestrategie 2050. Berechnung der Energiepotenziale für Wind-und Sonnenenergie. METEOTEST, Wetterprognosen, erneuerbare Energien, Luft und Klima, Umweltinformatik, Bern

  • Cornaro C, Bartocci S, Musella D, Strati C, Lanuti A, Mastroianni S, Penna S, Guidobaldi A, Giordano F, Petrolati E, Brown TM, Reale A, Di Carlo A (2015) Comparative analysis of the outdoor performance of a dye solar cell mini-panel for building integrated photovoltaics applications. Prog Photovolt 23:215–225. doi:10.1002/pip.2426

    Article  Google Scholar 

  • de Castro C, Mediavilla M, Miguel LJ, Frechoso F (2011) Global wind power potential: physical and technological limits. Energy Policy 39:6677–6682. doi:10.1016/j.enpol.2011.06.027

    Article  Google Scholar 

  • de Castro C, Mediavilla M, Miguel LJ, Frechoso F (2013) Global solar electric potential: a review of their technical and sustainable limits. Renew Sustain Energy Rev 28:824–835. doi:10.1016/j.rser.2013.08.040

    Article  Google Scholar 

  • de Groot R (2006) Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc Urban Plan 75:175–186

    Article  Google Scholar 

  • De Schepper E, Van Passel S, Manca J, Thewys T (2012) Combining photovoltaics and sound barriers—a feasibility study. Renewable Energy 46:297–303. doi:10.1016/j.renene.2012.03.022

    Article  Google Scholar 

  • Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renewable Energy 76:375–380. doi:10.1016/j.renene.2014.11.058

    Article  Google Scholar 

  • Egli T, Bolliger J, Kienast F (2017) Evaluating ecosystem service trade-offs with wind electricity production in Switzerland. Renew Sustain Energy Rev 67:863–875

    Article  Google Scholar 

  • EUR-Lex Access to European Union Law (2011) Greenhouse gas: reducing emissions by 20% or more by 2020

  • Frantal B (2015) Have local government and public expectations of wind energy project benefits been met? Implications fro repowering schemes. J Environ Planning Policy Manage 17:217–236. doi:10.1080/1523908X.2014.936583

    Article  Google Scholar 

  • GEA (2012) Global energy assessment—toward a sustainable future. Cambridge University Press, Cambridge

    Google Scholar 

  • Grêt-Regamey A, Weibel B, Kienast F, Rabe S-E, Zulian G (2015) A tiered approach for ecosystem services mapping. Ecosyst Serv 13:16–27. doi:10.1016/j.ecoser.2014.10.008

    Article  Google Scholar 

  • Grilli G, Balest J, De Meo I, Garegnani G, Paletto A (2016) Expert’s opinions on the effects of renewable energy development on ecosystem services in the Alpine region. J Renew Sustain Energy 8:013115. doi:10.1063/1.4943010

    Article  Google Scholar 

  • Grubler A, Bai X, Buettner T, Dhakal S, Fisk DJ, Ichinose T, Keirstead JE, Sammmer G, Satterthwaite D, Schulz NB, Shah N (2012) Urban energy systems. In: GEA (ed) Global energy assessment—toward a sustainable future. Cambridge University Press, Cambridge, 1330 pp

  • Haines-Young R, Potschin M (2013) Common international classification of ecosystem services (CICES). Report to the European Environment Agency

  • Hastik R, Basso S, Geitner C, Haida C, Poljanec A, Portaccio A, Vrščaj B, Walzer C (2015) Renewable energies and ecosystem service impacts. Renew Sustain Energy Rev 48:608–623. doi:10.1016/j.rser.2015.04.004

    Article  Google Scholar 

  • Heinbach K, Aretz A, Hirschl B, Prahl A, Salecki S (2014) Renewable energies and their impact on local value-added and employment. Energy Sustain Soc 4:1–10. doi:10.1186/2192-0567-4-1

    Article  Google Scholar 

  • Henning HM, Palzer A (2012) 100% erneuerbare Energien für Strom und Wärme in Deutschland. Report Fraunhofer-Institute for Solar Energy Systems ISE. Accessed on 26 Nov 2016 from https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/studie-100-erneuerbare-energien-in-deutschland.pdf

  • Horch P, Schmid H, Guélat J, Liechti F (2013). Konfliktpotenzialkarte Windenergie—Vögel Schweiz: Teilbereich Brutvögel, Gastvögel und Vogelschutzgebiete gemäss WZVV. Erläuterungsbericht. Aktualisierung 2013. Schweizerische Vogelwarte, Sempach

  • Infras (2010) Stromeffizienz und erneuerbare Energien. Wirtschaftliche Alternative zu Grosskraftwerken, Zürich

    Google Scholar 

  • Jaeger JAG, Schwick C (2014) Improving the measurement of urban sprawl: Weighted Urban Proliferation (WUP) and its application to Switzerland. Ecol Ind 38:294–308. doi:10.1016/j.ecolind.2013.11.022

    Article  Google Scholar 

  • Kienast F, Buergi M, Wildi O (2004) Landscape research in Switzerland: exploring space and place of a multi-ethnic society. Belgeo 2–3:369–384

    Article  Google Scholar 

  • Kienast F, Bolliger J, Potschin M, de Groot RS, Verburg PH, Heller I, Wascher D, Haines-Young R (2009) Assessing landscape functions with broad-scale environmental data: insights gained from a prototype development for Europe. Environ Manage 44:1099–1120. doi:10.1007/s00267-009-9384-7

    Article  Google Scholar 

  • Kienast F, Degenhardt B, Weilenmann B, Wager Y, Buchecker M (2012) GIS-assisted mapping of landscape suitability for nearby recreation. Landsc Urban Plan 105:385–399. doi:10.1016/j.landurbplan.2012.01.015

    Article  Google Scholar 

  • Kienast F, Frick J, van Strien MJ, Hunziker M (2015) The Swiss Landscape Monitoring Program—a comprehensive indicator set to measure landscape change. Ecol Model 295:136–150. doi:10.1016/j.ecolmodel.2014.08.008

    Article  Google Scholar 

  • Kienast F, Huber N, Hergert R, Bolliger J, Segura Moran L, Hersperger A (2017) Conflicts between decentralized renewable electricity production and landscape services—a spatially-explicit quantitative assessment for Switzerland. Renew Sustain Energy Rev 67:397–407. doi:10.1016/j.rser.2016.09.045

    Article  Google Scholar 

  • Kirchner A (2012) Die Energieperspektiven für die Schweiz bis 2050. Energienachfrage und Elektrizitätsangebot für die Schweiz 2000–2050, Ergebnisse der Modellrechnungen für das Energiesystem. Prognos, AG. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK und Bundesamt für Energie BFE. 842

  • Kontogianni A, Tourkolias C, Skourtos M, Damigos D (2014) Planning globally, protesting locally: patterns in community perceptions towards the installation of wind farms. Renewable Energy 66:170–177. doi:10.1016/j.renene.2013.11.074

    Article  Google Scholar 

  • Korcaj L, Hahnel UJJ, Spada H (2015) Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers. Renewable Energy 75:407–415. doi:10.1016/j.renene.2014.10.007

    Article  Google Scholar 

  • Kosfeld R, Gückelhorn F (2012) Ökonomische Effekte erneuerbarer Energien auf regionaler Ebene. Raumforsch Raumordn 70:437–449

    Article  Google Scholar 

  • Liechti F, Guélat J, Komenda-Zehnder SBC (2013) Modelling the spatial concentrations of bird migration to assess conflicts with wind turbines. Biol Conserv 162:24–32. doi:10.1016/j.biocon.2013.03.018

    Article  Google Scholar 

  • Michel AH, Buchecker M, Backhaus N (2015) Renewable energy, authenticity, and tourism: social acceptance of photovoltaic installations in a Swiss alpine region. Mt Res Dev 35:161–170. doi:10.1659/mrd-journal-d-14-00111.1

    Article  Google Scholar 

  • Moriarty P, Honnery D (2012) What is the global potential for renewable energy? Renew Sustain Energy Rev 16:244–252. doi:10.1016/j.rser.2011.07.151

    Article  Google Scholar 

  • Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Policy 93:3–7. doi:10.1016/j.enpol.2016.02.051

    Article  Google Scholar 

  • Palmas C, Siewert A, von Haaren C (2015) Exploring the decision-space for renewable energy generation to enhance spatial efficiency. Environ Impact Assess Rev 52:9–17. doi:10.1016/j.eiar.2014.06.005

    Article  Google Scholar 

  • Pasqualetti MJ (2011) Opposing wind energy landscapes: a search for common cause. Ann Assoc Am Geogr 101:907–917. doi:10.1080/00045608.2011.568879

    Article  Google Scholar 

  • Patel S (2015) New approach powers bladeless wind turbine. Power 159:14–16

    Google Scholar 

  • Price B, Kienast F, Seidl I, Ginzler C, Verburg PH, Bolliger J (2015) Future landscapes of Switzerland: risk areas for urbanisation and land abandonment. Appl Geogr 57:32–41. doi:10.1016/j.apgeog.2014.12.009

    Article  Google Scholar 

  • Ramachandra TV, Shruthi BV (2007) Spatial mapping of renewable energy potential. Renew Sustain Energy Rev 11:1460–1480. doi:10.1016/j.rser.2005.12.002

    Article  Google Scholar 

  • Raupach-Sumiya J, Matsubara H, Prahl A, Aretz A, Salecki S (2015) Regional economic effects of renewable energies—comparing Germany and Japan. Energy Sustain Soc 5:1–17. doi:10.1186/s13705-015-0036-x

    Article  Google Scholar 

  • Renewable Energy Directive (2009) Directive 2009/28/EC of the European Parliament and the Council of April 23 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77EC and 2003/30/EC, 5.6.2009

  • Ribi F, Buser B, Felten NV, Walther R, Bernath K (2012) Regionalökonomische Potenziale und Erfolgsfaktoren für den Aufbau und Betrieb von Energieregionen. Studie im Auftrag von Bundesamt für Raumentwicklung (ARE), Bundesamt für Energie (BFE), Bundesamt für Landwirtschaft (BLW) und Staatssekretariat für Wirtschaft (seco) Bern

  • SATW (2006) Swiss Academy of Engineering Sciences: Roadmap Erneuerbare Energien Schweiz. Bern

  • SFSO BfS (2013) Land use in Switzerland: results of the Swiss land use statistics. Neuchatel

  • Smallwood KS (2013) Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wildl Soc Bull 37:19–33. doi:10.1002/wsb.260

    Article  Google Scholar 

  • Solarserver (2016). Mehr als 2300 Quadratkilometer Gebäudefläche für Photovoltaik und Solarthermie nutzbar. Accessed on 26 Nov 2016 from http://www.solarserver.de/news/news-7381.html

  • Stoeglehner G, Neimetz N, Kettl KH (2011) Spatial dimensions of sustainable energy systems: new visions for integrated spatial and energy planning. Sustain Soc 1:1–9. doi:10.1016/j.renene.2010.01.018

    Article  Google Scholar 

  • Stoll BL, Smith TA, Deinert MR (2013) Potential for rooftop photovoltaics in Tokyo to replace nuclear capacity. Environ Res Lett. doi:10.1088/1748-9326/8/1/014042

    Google Scholar 

  • Taylor PC, Turner JA (2012) Renewable energy incentives: subsidies or subventions? J Renew Sustain Energy. doi:10.1063/1.4730619

    Google Scholar 

  • Tsoutsos T, Frantzeskaki N, Gekas V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33:289–296. doi:10.1016/s0301-4215(03)00241-6

    Article  Google Scholar 

  • Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol 24:1167–1181. doi:10.1007/s10980-009-9355-7

    Article  Google Scholar 

  • Wissen Hayek U, Jaeger JAG, Schwick C, Jarne A, Schuler M (2011) Measuring and assessing urban sprawl: what are the remaining options for future settlement development in Switzerland for 2030? Appl Spat Anal Policy 4:249–279. doi:10.1007/s12061-010-9055-3

    Article  Google Scholar 

  • Wolsink M (2007) Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’. Renew Sustain Energy Rev 11:1188–1207. doi:10.1016/j.rser.2005.10.005

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for valuable input from the Editor and two reviewers on earlier versions of the manuscript. We thank our interview partners from three leading renewable energy offices: Urs Elber from PSI (Paul Scherrer Institute, Villigen), 13 October 2014; Andreas Fürholz from ZHAW (Zurich University of Applied Sciences, Wädenswil), 21 October 2014; Oliver Kohle from Kohle & Nussbaumer SA (Lausanne), 11 November 2014. This project was financed by three WSL internal grants to Bronwyn Price, Nica Huber and Rico Hergert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Bolliger.

Additional information

Editor: Helmut Haberl.

Nica Huber, Rico Hergert, Marco Pütz, Felix Kienast and Janine Bolliger have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, N., Hergert, R., Price, B. et al. Renewable energy sources: conflicts and opportunities in a changing landscape. Reg Environ Change 17, 1241–1255 (2017). https://doi.org/10.1007/s10113-016-1098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1098-9

Keywords

Navigation