Skip to main content

Advertisement

Log in

Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This study applied catchment modeling to examine the potential effects of climate change and future land management variations on streamflow and microbial transport sensitivities for two locations in the west of Ireland (Black River and Fergus River). Simulations focused on plausible combined scenarios of climate, population and agricultural production variations for the 2041–2060 period and compares resultant impacts to a baseline existing period (1994–2007). The variations in monthly, seasonal and annual streamflow, and the daily microbial load (for E. coli) were used to assess sensitivities. Results indicate that possible future changes in microbial load for both the Fergus and Black catchments typically follow projected seasonal fluctuations in precipitation and streamflow. Increased winter rainfall (intensity and frequency) will cause significant impacts on microbial transport, representing a period of increased risk. An increase in microbial source loads to land, concomitantly with projected changes in climate is likely to exert greater microbial pollutant pressures on surface waters. The simulated scenarios, and resultant microbial load changes, suggest that future variations in land use/management may be as important as the effects of climate change on in-stream microbial pollutant loads. Outcomes from this study can prove useful for informing water resource managers and other decision makers about potential impacts. This information can instigate the development of adaptation measures needed to alleviate increased catchment pollution from microbial contaminants (and other pollutants) in future years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi M, Records R, Arabi M (2014) Impact of climate change on diffuse pollutant fluxes at the watershed scale. Hydrol Process 28:1962–1972. doi:10.1002/hyp.9723

    Article  CAS  Google Scholar 

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol Process 19:563–572. doi:10.1002/hyp.5611

    Article  Google Scholar 

  • Baffaut C, Sadeghi A (2010) Bacteria modeling with SWAT for assessment and remediation studies: a review. Trans ASABE 53:1585–1594. doi:10.13031/2013.34907

    Article  Google Scholar 

  • Bell A, Zhu T, Xie H, Ringler C (2014) Climate–water interactions—challenges for improved representation in integrated assessment models. Energy Econ. doi:10.1016/j.eneco.2013.12.016

    Google Scholar 

  • Benham B, Baffaut C, Zeckoski RW, Mankin KR, Pachepsky YA, Sadeghi AM, Brannan KM, Soupir ML, Habersack MJ (2006a) Modeling bacteria fate and transport in watersheds to support TMDLs. Trans ASABE 49:987–1002. doi:10.13031/2013.20783

    Article  Google Scholar 

  • Benham BL, Zeckoski RW, Mishra A (2006b) Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek. Virginia Tech. http://www.deq.virginia.gov/portals/0/DEQ/Water/TMDL/apptmdls/roankrvr/piggec.pdf. Accessed May 2014

  • Butcher J, Parker A, Johnson T, Weaver C (2010) Nationwide watershed modeling to evaluate potential impacts of climate and land use change on hydrology and water quality. In: Watershed Management 2010. American Society of Civil Engineers, pp 1350–1361. doi:10.1061/41143(394)121

  • Candela L, Tamoh K, Olivares G, Gomez M (2012) Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Sci Total Environ 440:253–260. doi:10.1016/j.scitotenv.2012.06.062

    Article  CAS  Google Scholar 

  • Chin D (2011) Quantifying Pathogen Sources in Streams by Hydrograph Separation. J Environ Eng 137(9):770–781. doi:10.1061/(ASCE)EE.1943-7870.0000394

    Article  CAS  Google Scholar 

  • Chin DA, Sakura-Lemessy D, Bosch DD, Gay PA (2009) Watershed-scale fate and transport of bacteria. Trans ASABE 52(1):145–154

    Article  Google Scholar 

  • Chien H, Yeh PJF, Knouft JH (2013) Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J Hydrol 491:73–88. doi:10.1016/j.jhydrol.2013.03.026

    Article  Google Scholar 

  • Christensen N, Lettenmaier DP (2006) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol Earth Syst Sci Discuss 3:3727–3770. doi:10.5194/hessd-3-3727-2006

    Article  Google Scholar 

  • Coffey R, Cummins E, Cormican M, Flaherty VO, Kelly S (2007) Microbial exposure assessment of waterborne pathogens. Hum Ecol Risk Assess 13(6):1313–1351

    Article  Google Scholar 

  • Coffey R, Cummins E, Bhreathnach N, Flaherty VO, Cormican M (2010) Development of a pathogen transport model for Irish catchments using SWAT. Agric Water Manag 97:101–111. doi:10.1016/j.agwat.2009.08.017

    Article  Google Scholar 

  • Coffey R, Dorai-Raj S, O’Flaherty V, Cormican M, Cummins E (2013) Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Hum Ecol Risk Assess Int J 19(1):232–253. doi:10.1080/10807039.2012.701983

    Article  CAS  Google Scholar 

  • Coffey R, Benham B, Krometis L-A, Wolfe ML, Cummins E (2014) Assessing the effects of climate change on waterborne microorganisms: implications for EU and US Water Policy. Hum Ecol Risk Assess Int J 20:724–742. doi:10.1080/10807039.2013.802583

    Article  CAS  Google Scholar 

  • Coffey R, Benham B, Kline K, Wolfe ML, Cummins E (2015) Modeling the impacts of climate change and future land use variation on microbial transport. Water Clim Change 6:23. doi:10.2166/wcc.2015.049

    Google Scholar 

  • CSO (2013) Principal CSO Agriculture Statistics. http://www.cso.ie/en/statistics/agricultureandfishing/. Accessed April 2014

  • Delpla I, Jung AV, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35:1225–1233. doi:10.1016/j.envint.2009.07.001

    Article  CAS  Google Scholar 

  • Dessai S, Hulme M (2007) Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the East of England. Glob Environ Change 17:59–72. doi:10.1016/j.gloenvcha.2006.11.005

    Article  Google Scholar 

  • Dorai-Raj S, Grady JO, Colleran E (2009) Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Res 43:4980–4988. doi:10.1016/j.watres.2009.08.050

    Article  CAS  Google Scholar 

  • Dunn SM, Brown I, Sample J, Post H (2012) Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J Hydrol 434–435:19–35. doi:10.1016/j.jhydrol.2012.02.039

    Article  Google Scholar 

  • Dunne S, Hanafin J, Lynch P, McGrath R, Nishimura E, Nolan P, Venkata Ratnam J, Semmler T, Sweeney C, Varghese S, Wang S (2009) Ireland in a Warmer World—scientific predictions of the Irish climate in the twenty-first century. Environmental Protection Agency, Met Éireann and University College Dublin. http://www.epa.ie/pubs/reports/research/climate/STRIVE_27_Dunne_C4I_web.pdf. Accessed May 2014

  • ECARD (2010) Prospects for agricultural markets and income in the EU. http://www.eurocarne.com/daal?a1=informes&a2=fullrep_en.pdf. Accessed May 2014

  • Eurostat (2014) Agricultural production. European Commission. http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/agricultural_production/database. Accessed May 2014

  • Ficklin DL, Luo Y, Luedeling E, Zhang M (2009) Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J Hydrol 374:16–29. doi:10.1016/j.jhydrol.2009.05.016

    Article  CAS  Google Scholar 

  • Ficklin DL, Luo Y, Luedeling E, Gatzke SE, Zhang M (2010) Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environ Pollut 158:223–234. doi:10.1016/j.envpol.2009.07.016

    Article  CAS  Google Scholar 

  • Ficklin D, Stewart I, Maurer E (2013) Effects of projected climate change on the hydrology in the Mono Lake Basin. California Climatic Change 116:111–131. doi:10.1007/s10584-012-0566-6

    Article  Google Scholar 

  • Fowler H, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Frey SK, Topp E, Edge T, Fall C, Gannon V, Jokinen C, Lapen DR (2013) Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed. Water res 47(16):6326–6337

    Article  CAS  Google Scholar 

  • Gardiner MJ, Radford T (1980) Soil associations of Ireland and their land use potential. Explanatory Bulletin to the Soil Map of Ireland 1980. Soil Survey Bulletin No. 36. Dublin. http://www.agresearch.teagasc.ie/johnstown/Soil%20maps/General%20Soils%20map/Book.pdf. Accessed may 2014

  • Gleeson E, McGrath R, Treanor M (2013) Ireland’s climate: the road ahead. Met Éireann, Dublin

  • Gray N (2014) Chapter thirty-six—The implications of global warming and climate change on waterborne diseases. In: Percival SL, Yates MV, Williams DW, Chalmers RM, Gray NF (eds) Microbiology of waterborne diseases, 2nd edn. Academic Press, London, pp 653–666. doi:10.1016/B978-0-12-415846-7.00036-6

    Chapter  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350. doi:10.1175/JCLI3339.1

    Article  Google Scholar 

  • Hampson D, Crowther J, Bateman I, Kay D, Posen P, Stapleton C, Wyer M, Fezzi C, Jones P, Tzanopoulos J (2010) Predicting microbial pollution concentrations in UK rivers in response to land use change. Water Res 44:4748–4759. doi:10.1016/j.watres.2010.07.062

    Article  CAS  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36:387–397. doi:10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hofstra N (2011) Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water. Curr Opin Environ Sustain 3:471–479. doi:10.1016/j.cosust.2011.10.006

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Iudicello JJ, Chin DA (2014) In-stream bacteria modeling as a function of the hydrologic state of a watershed. J Environ Eng 141(4):04014073

    Article  Google Scholar 

  • Jamieson RC, Gordon RJ, Tattrie SC, Stratton GW (2003) Sources and persistence of fecal coliform bacteria in a rural watershed. Water Qual Res J Canada 38(1):33–47

    CAS  Google Scholar 

  • Jayakody P, Parajuli PB, Brooks JP (2014) Assessing climate variability impact on thermotolerant coliform bacteria in surface water. Hum Ecol Risk Assess Int J. doi:10.1080/10807039.2014.909188

    Google Scholar 

  • Jennings E, Allott N, Pierson DC, Schneiderman EM, Lenihan D, Samuelsson P, Taylor D (2009) Impacts of climate change on phosphorus loading from a grassland catchment: implications for future management. Water Res 43:4316–4326. doi:10.1016/j.watres.2009.06.032

    Article  CAS  Google Scholar 

  • Johnson T, Weaver C (2009) A framework for assessing climate change impacts on water and watershed systems. Environ Manag 43:118–134. doi:10.1007/s00267-008-9205-4

    Article  Google Scholar 

  • Johnson T, Butcher J, Parker A, Weaver C (2011) Investigating the sensitivity of U.S. streamflow and water quality to climate change: U.S. EPA Global Change Research Program’s 20 Watersheds Project. J Water Resour Plan Manag 138:453–464. doi:10.1061/(ASCE)WR.1943-5452.0000175

    Article  Google Scholar 

  • Kim SM, Benham BL, Brannan KM, Zeckoski RW, Yagow GR (2007) Water quality calibration criteria for bacteria TMDL development. Appl Eng Agric 23:6. doi:10.13031/2013.22610

    Google Scholar 

  • Kim JW, Pachepsky YA, Shelton DR, Coppock C (2010) Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model 221(12):1592–1604. doi:10.1016/j.ecolmodel.2010.03.005

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Jimenez B, Miller K, Oki T, Sen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10. doi:10.1623/hysj.53.1.3

    Article  Google Scholar 

  • Larsen MC, Hamilton PA, Werkheiser WH (2013) Water quality status and trends in the United States. In: Ahuja S (ed) Monitoring water quality. Elsevier, Amsterdam, pp 19–57. doi:10.1016/B978-0-444-59395-5.00002-9

    Chapter  Google Scholar 

  • Lee E, Seong C, Kim H, Park S, Kang M (2010) Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network. J Environ Sci 22:840–845. doi:10.1016/S1001-0742(09)60186-8

    Article  Google Scholar 

  • Liu Z, Tong STY (2011) Using HSPF to model the hydrologic and water quality impacts of riparian land-use change in a small watershed. J Environ Inf 17:1–14. doi:10.3808/jei.201100182

    Article  CAS  Google Scholar 

  • Lopez SR, Hogue TS, Stein ED (2013) A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling. Hydrol Earth Syst Sci 17:3077–3094. doi:10.5194/hess-17-3077-2013

    Article  Google Scholar 

  • Luo Y, Ficklin DL, Liu X, Zhang M (2013) Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci Total Environ 450–451:72–82. doi:10.1016/j.scitotenv.2013.02.004

    Article  Google Scholar 

  • Marti R, Gannon VP, Jokinen C, Lanthier M, Lapen DR, Neumann NF, Ruecker NJ, Scott A, Wilkes G, Zhang Y, Topp E (2013) Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the South Nation River basin using Bacteroidales microbial source tracking markers. Water Res 47:2315–2324. doi:10.1016/j.watres.2013.02.009

    Article  CAS  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:16. doi:10.13031/2013.23153

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08823_S1.html

  • Nardone A, Ronchi B, Lacetera N, Ranieri MS, Bernabucci U (2010) Effects of climate changes on animal production and sustainability of livestock systems. Livest Sci 130:57–69. doi:10.1016/j.livsci.2010.02.011

    Article  Google Scholar 

  • New M, Lopez A, Dessai S, Wilby R (2007) Challenges in using probabilistic climate change information for impact assessments: an example from the water sector. Philos Trans R Soc Lond A Math Phys Eng Sci 365:2117–2131. doi:10.1098/rsta.2007.2080

    Article  Google Scholar 

  • Olmstead SM (2013) Climate change adaptation and water resource management: a review of the literature. Energy Econ. doi:10.1016/j.eneco.2013.09.005

    Google Scholar 

  • Oliver DM, Heathwaite AL, Fish RD, Chadwick DR, Hodgson CJ, Winter M, Butler AJ (2009) Scale appropriate modelling of diffuse microbial pollution from agriculture. Prog Phys Geogr 33:358–377

    Article  Google Scholar 

  • Pandey PK, Soupir ML, Rehmann CR (2012) A model for predicting resuspension of Escherichia coli from streambed sediments. Water Res 46:115–126. doi:10.1016/j.watres.2011.10.019

    Article  CAS  Google Scholar 

  • Parajuli PB, Mankin KR, Barnes PL (2009) Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresour Technol 100(2):953–963

    Article  CAS  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188

    Article  CAS  Google Scholar 

  • Pruss A, Kay D, Fewtrell L, Bartram J (2002) Estimating the burden of disease from water, sanitation, and hygiene at a global level. Environ Health Perspect 110:537–542. http://www.who.int/quantifying_ehimpacts/global/en/ArticleEHP052002.pdf. Accessed May 2014

  • Quevauviller P (2011) Adapting to climate change: reducing water-related risks in Europe—EU policy and research considerations. Environ Sci Policy 14:722–729. doi:10.1016/j.envsci.2011.02.008

    Article  Google Scholar 

  • Rehana S, Mujumdar PP (2012) Climate change induced risk in water quality control problems. J Hydrol 444–445:63–77. doi:10.1016/j.jhydrol.2012.03.042

    Article  Google Scholar 

  • Sadeghi A, Arnold JG (2002) A SWAT/microbial submodel for predicting pathogen loadings in surface and groundwater at watershed and basin scales. Paper presented at the Total Maximum Daily Load (TMDL) Environmental Regulations: Proceedings of the Conference, Fort Worth, Texas, USA, March 11–13, 2002. doi:10.13031/2013.7529

  • St Laurent J, Mazumder A (2014) Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition. Water Res 48:170–178. doi:10.1016/j.watres.2013.09.031

    Article  CAS  Google Scholar 

  • Tang J, McDonald S, Peng X, Samadder SR, Murphy TM, Holden NM (2011) Modelling cryptosporidium oocysts transport in small ungauged agricultural catchments. Water res 45(12):3665–3680

    Article  CAS  Google Scholar 

  • Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manag 66:377–393. doi:10.1006/jema.2002.0593

    Article  Google Scholar 

  • Tong STY, Sun Y, Ranatunga T, He J, Yang YJ (2012) Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Appl Geogr 32:477–489. doi:10.1016/j.apgeog.2011.06.014

    Article  Google Scholar 

  • Vermeulen L, Hofstra N (2014) Influence of climate variables on the concentration of Escherichia coli in the Rhine, Meuse, and Drentse Aa during 1985–2010. Reg Environ Change 14:307–319. doi:10.1007/s10113-013-0492-9

    Article  Google Scholar 

  • Villarini G, Strong A (2014) Roles of climate and agricultural practices in discharge changes in an agricultural watershed in Iowa. Agric Ecosyst Environ 188:204–211. doi:10.1016/j.agee.2014.02.036

    Article  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–723. doi:10.1899/04-028.1

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123. doi:10.1623/hysj.54.1.101

    Article  Google Scholar 

  • Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65(7):180–185. doi:10.1002/wea.543

    Article  Google Scholar 

  • Wu Y, Liu S, Gallant AL (2012) Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci Total Environ 430:150–160. doi:10.1016/j.scitotenv.2012.04.058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding under the Marie Sklodowska-Curie Actions scheme by Seventh Framework Programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Coffey.

Additional information

Editor: Erica Smithwick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coffey, R., Benham, B., Wolfe, M.L. et al. Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Reg Environ Change 16, 2111–2128 (2016). https://doi.org/10.1007/s10113-015-0912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0912-0

Keywords

Navigation