Skip to main content

Advertisement

Log in

Can current management maintain forest landscape multifunctionality in the Eastern Alps in Austria under climate change?

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

In Central Europe, management of forests for multiple ecosystem services (ES) has a long tradition and is currently drawing much attention due to increasing interest in non-timber services. In face of a changing climate and diverse ES portfolios, a key issue for forest managers is to assess vulnerability of ES provisioning. In a case study catchment of 250 ha in the Eastern Alps, the currently practiced uneven-aged management regime (BAU; business as usual) which is based on irregularly shaped patch cuts along skyline corridors was analysed under historic climate (represented by the period 1961–1990) and five transient climate change scenarios (period 2010–2110) and compared to an unmanaged scenario (NOM). The study addressed (1) the future provisioning of timber, carbon sequestration, protection against gravitational hazards, and nature conservation values under BAU management, (2) the effect of spatial scale (1, 5, 10 ha grain size) in mapping ES indicators and (3) how the spatial scale of ES assessment affects the simultaneous provision of several ES (i.e. multifunctionality). The analysis employed the PICUS forest simulation model in combination with novel landscape assessment tools. In BAU management, timber harvests were smaller than periodic increments. The resulting increase in standing stock benefitted carbon sequestration. In four out of five climate change scenarios, volume increment was increasing. With the exception of the mildest climate change scenario (+2.6 °C, no change in precipitation), all other analysed climate change scenarios reduced standing tree volume, carbon pools and number of large old trees, and increased standing deadwood volume due to an intensifying bark beetle disturbance regime. However, increases in deadwood and patchy canopy openings benefitted bird habitat quality. Under historic climate, the NOM regime showed better performance in all non-timber ES. Under climate change conditions, the damages from bark beetle disturbances increased more in NOM compared with BAU. Despite favourable temperature conditions in climate change scenarios, the share of admixed broadleaved species was not increasing in BAU management, mainly due to the heavy browsing pressure by ungulates. In NOM, it even decreased and mean tree age increased. Thus, in the long run NOM may enter a phase of lower resilience compared with BAU. Most ES indicators were fairly insensitive to the spatial scale of indicator mapping. ES indicators that were based on sparse tree and stand attributes such as rare admixed tree species, large snags and live trees achieved better results when mapped at larger scales. The share of landscape area with simultaneous provisioning of ES at reasonable performance levels (i.e. multifunctionality) decreased with increasing number of considered ES, while it increased with increasing spatial scale of the assessment. In the case study, landscape between 53 and 100 % was classified as multifunctional, depending on number and combinations of ES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boncina A (2011) Conceptual approaches to integrate nature conservation into forest management: a Central European perspective. Int For Rev 13:13–22. doi:10.1505/ifor.13.1.13

    Google Scholar 

  • Bußjäger P (2007) zu Luxusbauten wird kein Holz verabfolgt! - Die Geschichte des Forstfonds des Standes Montafon. In: Malin H, Maier B, Dönz-Breuß M (eds) Montafoner Standeswald - Montafoner Schriftenr. 18. Heimatschutzverein Montafon, Schruns, pp 9–24

  • Côté P, Tittler R, Messier C, Kneeshaw DD, Fall A, Fortin MJ (2010) Comparing different forest zoning options for landscape-scale management of the boreal forest: possible benefits of the TRIAD. For Ecol Manag 259:418–427. doi:10.1016/j.foreco.2009.10.038

    Article  Google Scholar 

  • Didion M, Kupferschmid AD, Lexer MJ, Rammer W, Seidl R, Bugmann H (2009) Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecol Model 220:133–147. doi:10.1016/j.ecolmodel.2008.09.021

    Article  Google Scholar 

  • Dorren LK, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195:165–176. doi:10.1016/j.foreco.2004.02.057

    Article  Google Scholar 

  • European Environment Agency (2010) Europe’s ecological backbone: recognising the true value of our mountains. doi:10.2800/43450

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. Bundesamt für Umwelt, Wald und Landschaft, Bern

    Google Scholar 

  • Fries C, Carlsson M, Dahlin B, Lämås T, Sallnäs O (1998) A review of conceptual landscape planning models for multiobjective forestry in Sweden. Can J For Res 28:159–167. doi:10.1139/x97-204

    Article  Google Scholar 

  • Fuhr M, Bourrier F, Cordonnier T (2015) Protection against rockfall along a maturity gradient in mountain forests. For Ecol Manag 354:224–231. doi:10.1016/j.foreco.2015.06.012

    Article  Google Scholar 

  • Grabherr G (2000) Biodiversity of mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. CABI, Wallingford, pp 28–51. doi:10.1079/9780851994468.0028

    Chapter  Google Scholar 

  • Grêt-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner U (2014) On the effects of scale for ecosystem services mapping. PLoS ONE. doi:10.1371/journal.pone.0112601

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207. doi:10.1038/nclimate1687

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS Trans AGU 85(52):566

    Article  Google Scholar 

  • Hollaus M, Wagner W, Eberhöfer C, Karel W (2006) Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS J Photogramm Remote Sens 60:323–338. doi:10.1016/j.isprsjprs.2006.05.002

    Article  Google Scholar 

  • Hollaus M, Wagner W, Maier B, Schadauer K (2007) Airborne laser scanning of forest stem volume in a mountainous environment. Sensors 7:1559–1577. doi:10.3390/s7081559

    Article  Google Scholar 

  • Huber MO, Eastaugh CS, Gschwantner T, Hasenauer H, Kindermann G, Ledermann T, Lexer MJ, Rammer W, Schörghuber S, Sterba H (2013) Comparing simulations of three conceptually different forest models with National Forest Inventory data. Environ Model Softw 40:88–97. doi:10.1016/j.envsoft.2012.08.003

    Article  Google Scholar 

  • Jacobsen JB, Vedel SE, Thorsen BJ (2013) Assessing costs of multifunctional NATURA 2000 management restrictions in continuous cover beech forest management. Forestry 86:575–582. doi:10.1093/forestry/cpt023

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439. doi:10.1890/06-1736.1

    Article  Google Scholar 

  • Kaljonen M, Primmer E, De Blust G, Nijnki M, Kulvik M (2007) Multifunctionality and biodiversity conservation—institutional challenges. In: Chmelievski T (ed) Nature conservation management: from idea to practical issues. PWZN Print6, Lublin, pp 53–69

    Google Scholar 

  • Lämås T, Eriksson LO (2003) Analysis and planning systems for multiresource, sustainable forestry: the Heureka research programme at SLU. Can J For Res 33:500–508. doi:10.1139/x02-213

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228. doi:10.1016/S0378-1127(97)00026-1

    Article  Google Scholar 

  • Lexer MJ, Hönninger K (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For Ecol Manag 144:43–65. doi:10.1016/S0378-1127(00)00386-8

    Article  Google Scholar 

  • Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M (2002) The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. For Ecol Manag 162:53–72. doi:10.1016/S0378-1127(02)00050-6

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Malin H, Lerch T (2007) Schutzwaldbewirtschaftung im Montafon. In: Malin H, Maier B, Dönz-Breuß M (eds) Montafoner Standeswald - Montafoner Schriftenr. 18. Heimatschutzverein Montafon, Schruns, pp 115–128

  • Malin H, Maier B (2007) Der Wald - Das grüne Rückgrat des Montafon. In: Malin H, Maier B, Dönz-Breuß M (eds) Montafoner Standeswald - Montafoner Schriftenreihe 18. Heimatschutzverein Montafon, Schruns, pp 91–114

    Google Scholar 

  • Maroschek M, Rammer W, Lexer MJ (2015) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change 15:1543–1555. doi:10.1007/s10113-014-0691-z

    Article  Google Scholar 

  • Mayer DG, Stuart MA, Swain AJ (1994) Regression of real-world data on model output: an appropriate overall test of validity. Agric Syst 45:93–104. doi:10.1016/S0308-521X(94)90282-8

    Article  Google Scholar 

  • McDonald J (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Neumann M (1993) Increment research on spruce at different altitudes in the Austrian Central Alps. Cent für das gesamte Forstwes 110:221–274

    Google Scholar 

  • Niese G (2011) Österreichs Schutzwälder sind total überaltert. BFW Praxisinformation 24:29–31

    Google Scholar 

  • Nijnik M, Nijnik A, Lundin L, Staszewski T, Postolache C (2010) A study of stakeholders’ perspectives on multi-functional forests in Europe. For Trees Livelihoods 19:341–358. doi:10.1080/14728028.2010.9752677

    Article  Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. doi:10.1111/j.1600-0870.2010.00466.x

    Article  Google Scholar 

  • Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. For Ecol Manag 318:349–358. doi:10.1016/j.foreco.2014.01.044

    Article  Google Scholar 

  • Pasztor F, Matulla C, Zuvela-Aloise M, Rammer W, Lexer MJ (2015) Developing predictive models of wind damage in Austrian forests. Ann For Sci 72:289–301. doi:10.1007/s13595-014-0386-0

    Article  Google Scholar 

  • Peng C (2000) Understanding the role of forest simulation models in sustainable forest management. Environ Impact Assess Rev 20:481–501. doi:10.1016/S0195-9255(99)00044-X

    Article  Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107:5242–5247. doi:10.1073/pnas.0907284107

    Article  CAS  Google Scholar 

  • Roces-Díaz JV, Díaz-Varela RA, Álvarez-Álvarez P, Recondo C, Díaz-Varela ER (2015) A multiscale analysis of ecosystem services supply in the NW Iberian Peninsula from a functional perspective. Ecol Indic 50:24–34. doi:10.1016/j.ecolind.2014.10.027

    Article  Google Scholar 

  • Seidl R, Lexer MJ, Jäger D, Honninger K (2005) Evaluating the accuracy and generality of a hybrid patch model. Tree Physiol 25:939–951. doi:10.1093/treephys/25.7.939

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248:64–79. doi:10.1016/j.foreco.2007.02.035

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220. doi:10.1016/j.foreco.2008.04.002

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2009) Estimating soil properties and parameters for forest ecosystem simulation based on large scale forest inventories [Schätzung von Bodenmerkmalen und Modellparametern fur die Waldokosystemsimulation auf Basis einer Großrauminventur]. Allg Forst- und Jagdzeitung 180:35–44

    Google Scholar 

  • Seidl R, Rammer W, Bellos P, Hochbichler E, Lexer MJ (2010) Testing generalized allometries in allocation modeling within an individual-based simulation framework. Trees-Struct Funct 24:139–150. doi:10.1007/s00468-009-0387-z

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41:694–706. doi:10.1139/x10-235

    Article  Google Scholar 

  • Suda M, Pukall K (2014) Multifunktionale Forstwirtschaft zwischen Inklusion und Extinktion (Essay). Schweizerische Zeitschrift fur Forstwes 165:333–338

    Article  Google Scholar 

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol 93:211–228. doi:10.1016/S0168-1923(98)00126-9

    Article  Google Scholar 

  • Vanclay JK, Skovsgaard JP (1997) Evaluating forest growth models. Ecol Model 98:1–12. doi:10.1016/S0304-3800(96)01932-1

    Article  Google Scholar 

  • Villa F, Voigt B, Erickson JD (2014) New perspectives in ecosystem services science as instruments to understand environmental securities. Philos Trans R Soc Lond B Biol Sci 369:20120286. doi:10.1098/rstb.2012.0286

    Article  Google Scholar 

  • Woltjer M, Rammer W, Brauner M, Seidl R, Mohren GMJ, Lexer MJ (2008) Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J Environ Manag 87:373–388. doi:10.1016/j.jenvman.2007.01.031

    Article  CAS  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782. doi:10.1023/A:1022995922992

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Forstfonds Stand Montafon for making internal information and data available and to Hubert Malin and Bernhard Maier for support and their interest in the study. The presented work was financially supported by the EU FP7 ARANGE project under Grant No. KBBE-289437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Irauschek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irauschek, F., Rammer, W. & Lexer, M.J. Can current management maintain forest landscape multifunctionality in the Eastern Alps in Austria under climate change?. Reg Environ Change 17, 33–48 (2017). https://doi.org/10.1007/s10113-015-0908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0908-9

Keywords

Navigation