Skip to main content
Log in

A multi-agent architecture for geosimulation of moving agents

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief–desire–intention and a request–inform–query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andrews PB (2002) An introduction to mathematical logic and type theory: to truth through proof. Academic Press Professional, San Diego

    Book  Google Scholar 

  • Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT Press, Cambridge

    Google Scholar 

  • Bauer B, Odell J (2005) UML 2.0 and agents: how to build agent-based systems with the new UML standard. Eng Appl Artif Intel 18(2):141–157

    Article  Google Scholar 

  • Benenson I, Torrens PM (2004) Geosimulation: object-based modeling of urban phenomena. Comput Environ Urban 28(1/2):1–8

    Article  Google Scholar 

  • Bennett B (1994) Spatial reasoning with propositional logics. In: Doyle J, Sandewall E, Torasso E (eds) Principles of knowledge representation and reasoning (KR94). Morgan Kaufmann, San Francisco, pp 51–62

    Google Scholar 

  • Beydoun G, Low G, Tran N, Bogg P (2011) Development of a peer-to-peer information sharing system using ontologies. Expert Syst Appl 38(8):9352–9364

    Article  Google Scholar 

  • Blecic I, Cecchini A, Trunfio GA, Andrea G (2009) A multi-agent geosimulation infrastructure for planning. In: Murgante B, Borruso G, Lapucci A (eds) Geocomputation and urban planning. Springer, Berlin, Heidelberg, pp 237–253

    Chapter  Google Scholar 

  • Bogaert P, Van de Weghe N, De Maeyer P (2004) Description, definition and proof of a qualitative state change of moving objects along a road network. In: Raubal M, Sliwinski A, Kuhn W (eds) Geoinformation and mobility, from research to applications. Proceedings of the Münster GI Days, Münster, pp 239–248

  • Bratman ME, Israel DJ, Pollack ME (1988) Plans and resource-bounded practical reasoning. Comput Intell 4(4):349–355

    Article  Google Scholar 

  • Brazier F, Keplicz BD, Jennings NR, Treur J (1995) Formal specification of multi-agent systems: a real-world case. In: Lesser V (ed) Proceedings of the first international conference on multi-agent systems (ICMAS 1995), MIT Press, Menlo Park, pp 103–112

  • Brown DG, Riolo R, Robinson DT, North M, Rand W (2005) Spatial process and data models: toward integration of agent-based models and GIS. J Geogr Syst 7(1):25–47

    Article  Google Scholar 

  • Castle CJE, Crooks AT (2006) Principles and concepts of agent-based modelling for developing geospatial simulations. Working paper 110, Centre for Advanced Spatial Analysis, University College London

  • Chen YM, Wei CW (2009) Multiagent approach to solve project team work allocation problems. Int J Prod Res 47(13):3453–3470

    Article  MathSciNet  MATH  Google Scholar 

  • Clementini E, Felice PD, Hernandez D (1997) Qualitative representation of positional information. Artif Intell 95(2):317–356

    Article  MATH  Google Scholar 

  • Cohn AG, Hazarika SM (2001) Qualitative spatial representation and reasoning: an overview. Fund Inf 46(1–2):1–29

    MathSciNet  MATH  Google Scholar 

  • Cohn AG, Bennett B, Gooday J, Gotts NM (1997) Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1(3):275–316

    Article  Google Scholar 

  • Cortés U, Sànchez-Marrè M, Ceccaroni L, R-Roda I, Poch M (2000) Artificial intelligence and environmental decision support systems. Appl Intell 13(1):77–91

    Article  Google Scholar 

  • Crooks AT, Castle C (2012) The integration of agent-based modelling and geographical information for geospatial simulation. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Berlin, pp 219–252

    Chapter  Google Scholar 

  • Deloach SA, Wood MF, Sparkman CH (2001) Multiagent system engineering. Int J Softw Eng Knowl 11(3):231–258

    Article  Google Scholar 

  • Dylla F, Wallgrün JO (2007) Qualitative spatial reasoning with conceptual neighborhoods for agent control. J Intell Robot Syst 48(1):55–78

    Article  Google Scholar 

  • Egenhofer MJ (1994) Deriving the composition of binary topological relations. J Vis Lang Comput 5(2):133–149

    Article  Google Scholar 

  • Epstein JM, Axtell RL (1996) Growing artificial societies: social science from the bottom up. The MIT Press, Cambridge

    Google Scholar 

  • Ferber J (1999) Multi-agent systems: an introduction to distributed artificial intelligence. Addison-Wesley, London

    Google Scholar 

  • Finin T, Fritzson R, McKay D, McEntire R (1994) KQML as an agent communication language. In: Adam N, Bhargava B, Yesha Y (eds) Proceedings of the third international conference on information and knowledge management (CIKM 1994). ACM Press, Gaithersburg, pp 456–463

  • Frank AU (1996) Qualitative spatial reasoning: cardinal directions as an example. Int J Geogr Inf Syst 10(3):269–290

    Article  ADS  Google Scholar 

  • Freksa C (1991) Qualitative spatial reasoning. In: Mark DM, Frank AU (eds) Cognitive and linguistic aspects of geographic space. Kluwer Academic Press, Dordrecht, pp 361–372

    Chapter  Google Scholar 

  • Gagné D, Pang W, Trudel A (1997) A spatio-temporal logic for 2D multi-agent problem domains. Expert Syst Appl 12(1):141–145

    Article  Google Scholar 

  • Gantner Z, Westphal M, Wölfl S (2008) GQR—a fast reasoner for binary qualitative constraint calculi. In: Guesgen HW, Ligozat G, Rodriguez RV (eds) Proceedings of the AAAI’08 workshop on spatial and temporal reasoning, AAAI Press, Chicago, pp 24–29

  • Georgeff MP, Lansky AL (1987) Reactive reasoning and planning. In: Forbus K, Shrobe H (eds) Proceedings of the sixth national conference on artificial intelligence (AAAI-87), Morgan Kaufmann, Washington, pp 677–682

  • Glover F (1990) Tabu search—part 2. ORSA J Comput 2(1):4–32

    Article  MATH  Google Scholar 

  • Guo D, Ren B, Wang C (2008) Integrated agent-based modeling with GIS for large scale emergency simulation. In: Kang L, Cai Z, Yan X, Liu Y (eds) Advances in computation and intelligence (ISICA 2008). Springer, Berlin, pp 618–625

    Chapter  Google Scholar 

  • Haddad H, Moulin B (2010) A framework to support qualitative reasoning about COAs in a dynamic spatial environment. J Exp Theor Artif Intell 22(4):341–380

    Article  MATH  Google Scholar 

  • Hernandez D, Clementini E, Felice PD (1995) Qualitative distances. In: Frank AU, Kuhn W (eds) Spatial information theory: a theoretical basis for GIS (COSIT 1995). Springer, Berlin, pp 45–57

    Chapter  Google Scholar 

  • Holzmann C (2007) Inferring and distributing spatial context. In: Kortuem G, Finney J, Rodger L, Sundramoorthy V (eds) Proceedings of the second european conference on smart sensing and context (EuroSSC 2007), Springer, Berlin, pp 77–92

  • Kinny D, Georgeff M, Rao A (1996) A methodology and modeling technique for systems of BDI agents. In: Perram J, Van de Velde W (eds) Proceedings of workshop on modelling autonomous agents in a multi-agent world (MAAMAW-96), Springer, Berlin, pp 56–71

  • Kocabas V, Dragicevic S (2013) Bayesian networks and an agent-based modeling approach for urban land-use and population density change: a BNAS model. J Geogr Syst 15(4):403–426

    Article  Google Scholar 

  • Ligtenberg A, Wachowicz M, Bregt A, Beulens A, Kettenis D (2004) A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manag 72(1/2):43–55

    Article  Google Scholar 

  • McCune W (2010) Prover9 and Mace4. http://www.cs.unm.edu/~mccune/Prover9

  • Moratz R, Wallgrün JO (2003) Spatial reasoning about relative orientation and distance for robot exploration. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory, foundations of geographic information science (COSIT 2003). Springer, Berlin, pp 61–74

    Chapter  Google Scholar 

  • Museros L, Monferrer MTE (2002) Modeling motion qualitatively: integrating space and time. In: Escrig M, Francisco T, Golobardes E (eds) Topics in artificial intelligence. Springer, Berlin, pp 64–74

    Chapter  Google Scholar 

  • Niazi M, Hussain A (2011) Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics 89(2):479–499

    Article  Google Scholar 

  • Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge

    MATH  Google Scholar 

  • Padgham L, Winikoff M (2003) Prometheus: a methodology for developing intelligent agents. In: Giunchiglia F, Odell JJ, Weiss G (eds) Proceedings of the third conference in agent-oriented software engineering (AOSE III), Springer, Berlin, pp 174–185

  • Parker DC (2005) Integration of geographic information systems and agent-based models of land use: challenges and prospects. In: Maguire DJ, Batty M, Goodchild M (eds) GIS, spatial analysis and modelling. ESRI Press, Redlands, pp 403–422

    Google Scholar 

  • Raimondi F, Lomuscio A (2007) Automatic verification of multi-agent systems by model checking via ordered binary decision diagrams. J Appl Log 5(2):235–251

    Article  MathSciNet  MATH  Google Scholar 

  • Randell DA, Cohn AG, Cui Z (1992a) A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W (eds) Principles of knowledge representation and reasoning (KR’92). Morgan Kaufmann, California, pp 165–176

    Google Scholar 

  • Randell DA, Cohn AG, Cui Z (1992b) Computing transitivity tables: a challenge for automated theorem provers. In: Kapur D (ed) Proceedings of the 11th international conference on automated deduction (CADE 11), Springer, Berlin, pp 786–790

  • Rao AS, Georgeff MP (1992) An abstract architecture for rational agents. In: Rich C, Swartout W, Nobel B (eds) Proceedings of knowledge representation and reasoning (KR&R-92), Morgan Kaufmann, Cambridge, pp 439–499

  • Renz J, Mitra D (2004) Qualitative direction calculi with arbitrary granularity. In: Zhang C, Guesgen HW, Yeap WK (eds) Proceedings of the 8th Pacific rim international conference on artificial intelligence (PRICAI 2004), Springer, Berlin, pp 65–74

  • Robinson DT, Brown DG (2009) Evaluating the effects of land-use development policies on ex-urban forest cover: an integrated agent-based GIS approach. Int J Geogr Inf Sci 23(9):1211–1232

    Article  Google Scholar 

  • Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach. Prentice Hall, New Jersey

    Google Scholar 

  • Sahli N, Moulin B (2009) EKEMAS, an agent-based geo-simulation framework to support continual planning in the real-word. Appl Intell 31(2):188–209

    Article  Google Scholar 

  • Sengupta RR, Bennett DA (2003) Agent-based modelling environment for spatial decision support. Int J Geogr Inf Sci 17(2):157–180

    Article  Google Scholar 

  • Shoham Y, Leyton-Brown K (2009) Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University Press, New York

    Google Scholar 

  • Silva DC, Braga RAM, Reis LP, Oliveira E (2012) Designing a meta-model for a generic robotic agent system using Gaia methodology. Inf Sci 195(1):190–210

    Article  Google Scholar 

  • Torrens P, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  • Uno K, Kashiyama K (2008) Development of simulation system for the disaster evacuation based on multi-agent model using GIS. Tsinghua Sci Tech 13(1001):348–353

    Article  Google Scholar 

  • Vahidnia MH, Alesheikh AA (2013) Ontological exploration of geospatial objects in context. Geo Spat Inf Sci 17(2):129–138

    Article  Google Scholar 

  • Vahidnia MH, Alesheikh AA (2014) Plain move predicate and its consistency concerning the moving agents in a network. Int J Geogr Inf Sci 28(11):2145–2177

    Article  Google Scholar 

  • Van de Weghe N (2004) Representing and reasoning about moving objects: a qualitative approach. Dissertation, Ghent University

  • Wallgrün JO, Frommberger L, Wolter D, Dylla F, Freksa C (2007) Qualitative spatial representation and reasoning in the SparQ-toolbox. In: Barkowsky T, Knauff M, Ligozat G, Montello D (eds) Spatial cognition V: reasoning, action, interaction. Springer, Berlin, pp 39–58

    Chapter  Google Scholar 

  • Wang F, Huang QY (2010) The importance of spatial-temporal issues for case-based reasoning in disaster management. In: Liu Y, Chen A (eds) Proceedings of the IEEE 18th international conference on geoinformatics, IEEE Computer Society, Piscataway, pp 1–5

  • Wooldridge M (2000) Reasoning about rational agents. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Wooldridge M (2009) An introduction to multiagent systems. Wiley, Chichester

    Google Scholar 

  • Wu F (1999) GIS-based simulation as an exploratory analysis for space-time processes. J Geogr Syst 1(3):199–218

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Iran’s National Elites Foundation (INEF). Our thanks are also extended to the anonymous referees of the paper for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Vahidnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidnia, M.H., Alesheikh, A.A. & Alavipanah, S.K. A multi-agent architecture for geosimulation of moving agents. J Geogr Syst 17, 353–390 (2015). https://doi.org/10.1007/s10109-015-0218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-015-0218-2

Keywords

JEL Classification

Navigation