Skip to main content
Log in

Radial duality part I: foundations

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Renegar (SIAM J Optim 26(4):2649–2676, https://doi.org/10.1137/15M1027371 2016) introduced a novel approach to transforming generic conic optimization problems into unconstrained, uniformly Lipschitz continuous minimization. We introduce radial transformations generalizing these ideas, equipped with an entirely new motivation and development that avoids any reliance on convex cones or functions. Of practical importance, this facilitates the development of new families of projection-free first-order methods applicable even in the presence of nonconvex objectives and constraint sets. Our generalized construction of this radial transformation uncovers that it is dual (i.e., self-inverse) for a wide range of functions including all concave objectives. This gives a new duality relating optimization problems to their radially dual problem. For a broad class of functions, we characterize continuity, differentiability, and convexity under the radial transformation as well as develop a calculus for it. This radial duality provides a foundation for designing projection-free radial optimization algorithms, which is carried out in the second part of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Since we are considering functions mapping into \(\mathbb {R}_{++}\cup \{0,\infty \}\), if no \(v>0\) satisfies \((y,v) \in \varGamma (\textrm{epi}\ f)\), we have the supremum defining \(f^{\varGamma }(y)\) equal zero.

  2. Note the typical definition of this gauge allows \(\lambda \) nonnegative, rather than positive. These two definitions are often equivalent, for example, for any convex S containing 0.

  3. Throughout this manuscript, we claim mirrored results for the lower radial transformation in our theorems and propositions. We omit the proofs for these as they parallel those for the upper radial case.

  4. A continuous functions is (strictly) upper radial if and only if it is (strictly) lower radial. In such cases, we simply say the function is (strictly) radial as a shorthand.

References

  1. Aravkin, A.Y., Burke, J.V., Drusvyatskiy, D., Friedlander, M.P., MacPhee, K.J.: Foundations of gauge and perspective duality. SIAM J. Optim. 28(3), 2406–2434 (2018). https://doi.org/10.1137/17M1119020

    Article  MathSciNet  Google Scholar 

  2. Artin, E.: Geometric Algebra. Interscience. Wiley. https://books.google.com/books?id=NRXNNVeix14C (1988)

  3. Artstein-Avidan, S., Florentin, D., Milman, V.: Order Isomorphisms on Convex Functions in Windows, pp. 61–122. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29849-3_4

  4. Artstein-Avidan, S., Milman, V.: Hidden structures in the class of convex functions and a new duality transform. J. Eur. Math. Soc. 013(4), 975–1004 (2011)

    Article  MathSciNet  Google Scholar 

  5. Artstein-Avidan, S., Rubinstein, Y.A.: Differential analysis of polarity: polar Hamilton–Jacobi, conservation laws, and monge ampère equations. Journal d’Analyse Mathématique (2017). https://doi.org/10.1007/s11854-017-0016-5

    Article  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization, p. 89. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  7. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin, Heidelberg (1998)

    Google Scholar 

  8. Freund, R.M.: Dual gauge programs, with applications to quadratic programming and the minimum-norm problem. Math. Program. 38, 47–67 (1987). https://doi.org/10.1007/BF02591851

    Article  MathSciNet  Google Scholar 

  9. Grimmer, B.: Radial subgradient method. SIAM J. Optim. 28(1), 459–469 (2018). https://doi.org/10.1137/17M1122980

    Article  MathSciNet  Google Scholar 

  10. Grimmer, B.: Radial Duality Part II: Applications and Algorithms. arXiv:2104.11185 (2021)

  11. Jian, H., Wang, X.J.: Bernstein theorem and regularity for a class of Monge–Ampère equations. J. Differ. Geom. 93(3), 431–469 (2013). https://doi.org/10.4310/jdg/1361844941

    Article  Google Scholar 

  12. Prasolov, V., Tikhomirov, V.: Geometry. Providence, R.I.: American Mathematical Society; Oxford University Press (2001)

  13. Renegar, J.: Efficient subgradient methods for general convex optimization. SIAM J. Optim. 26(4), 2649–2676 (2016). https://doi.org/10.1137/15M1027371

    Article  MathSciNet  Google Scholar 

  14. Renegar, J.: Accelerated first-order methods for hyperbolic programming. Math. Program. 173(1–2), 1–35 (2019). https://doi.org/10.1007/s10107-017-1203-y

    Article  MathSciNet  Google Scholar 

  15. Shiffman, B.: Synthetic projective geometry and Poincaré’s theorem on automorphisms of the ball. Enseign. Math. (2) 41, 201–215 (1995)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Jim Renegar broadly for inspiring this work and concretely for providing feedback on multiple drafts. Further, Jim had the valuable idea to use the implicit function theorem to simplify and improve the proof of Proposition 21. Additionally, three anonymous referees and the associate editor provided useful feedback much improving this work’s presentation and clarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Grimmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650441. This work was partially done while the author was visiting the Simons Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimization through NSF Grant #CCF-1740425.

Proofs computing some radial set transformations

Proofs computing some radial set transformations

1.1 Proof of Proposition 1

It suffices to show S being convex implies \(\varGamma S\) is convex, since the duality of the radial set transformation (3) will then imply the reverse direction. Consider any \((y,v),(y',v')\in \varGamma S\). Let \((x,u) = \varGamma (y,v)\) and \((x',u')=\varGamma (y',v')\). Then \(\lambda (x,u) + (1-\lambda )(x',u') \in S\) for any \(0\le \lambda \le 1\). Therefore the line segment between (yv) and \((y',v')\) lies in \(\varGamma S\) as

$$\begin{aligned} \varGamma S&\ni \frac{(\lambda x + (1-\lambda )x', 1)}{\lambda u + (1-\lambda )u'} =\frac{\lambda /v}{\lambda /v + (1-\lambda )/v'}(y,v) + \frac{(1-\lambda )/v'}{\lambda /v + (1-\lambda )/v'}(y',v'). \end{aligned}$$

1.2 Proof of Proposition 2

It suffices to show S being a halfspace implies \(\varGamma S\) is a halfspace, since the duality of the radial set transformation (3) will then imply the reverse direction. By definition, we have

$$\begin{aligned} \varGamma S&=\left\{ \frac{(x',1)}{u'}\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} \zeta \\ \delta \end{bmatrix}^T\begin{bmatrix} x'-x \\ u'-u \end{bmatrix}\le 0\right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} \zeta \\ \delta \end{bmatrix}^T\begin{bmatrix} y'/v'-x \\ 1/v'-u \end{bmatrix}\le 0 \right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} \zeta \\ \delta \end{bmatrix}^T\begin{bmatrix} y'-v'x \\ 1-v'u \end{bmatrix}\le 0 \right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} \zeta \\ -(\zeta ,\delta )^T(x,u) \end{bmatrix}^T\begin{bmatrix} y' \\ v' \end{bmatrix} +\delta \le 0 \right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} \zeta \\ -(\zeta ,\delta )^T(x,u) \end{bmatrix}^T\begin{bmatrix} y'-y \\ v'-v \end{bmatrix} \le 0 \right\} . \end{aligned}$$

1.3 Proof of Proposition 3

It suffices to show S being an ellipsoid in \(\mathcal {E}\times \mathbb {R}_{++}\) implies \(\varGamma S\) is an ellipsoid \(\mathcal {E}\times \mathbb {R}_{++}\), since the duality of the radial set transformation (3) will then imply the reverse direction. Denote the blocks of H by \(\begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix}\) and define the following matrix

$$\begin{aligned} G = \begin{bmatrix} H_{11} &{} -\begin{bmatrix} H_{11} \\ H^T_{12} \end{bmatrix}^T\begin{bmatrix} x \\ u\end{bmatrix}\\ -\begin{bmatrix} x \\ u\end{bmatrix}^T\begin{bmatrix} H_{11} \\ H^T_{12} \end{bmatrix} &{} \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} -1 \end{bmatrix}, \end{aligned}$$

related to the radially dual ellipsoid. For any ellipsoid \(S\subseteq \mathcal {E}\times \mathbb {R}_{++}\) defined by (7), we claim that \(\varGamma S\) is the following ellipsoid in \(\mathcal {E}\times \mathbb {R}_{++}\) with center \(\begin{bmatrix}y \\ v\end{bmatrix} = G^{-1}\begin{bmatrix}-H_{12}\\ H_{12}^Tx + H_{22}u \end{bmatrix}\)

$$\begin{aligned} \varGamma S = \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} y'-y \\ v'-v \end{bmatrix}^T \left( \frac{G}{\begin{bmatrix}y \\ v\end{bmatrix}^T G \begin{bmatrix}y \\ v\end{bmatrix} - H_{22}}\right) \begin{bmatrix} y'-y \\ v'-v \end{bmatrix} \le 1\right\} . \end{aligned}$$

First, we observe that G is indeed positive definite. Since H is positive definite, considering its Schur complements ensures \(H_{11}\) is positive definite and \(H_{22} - H_{12}^TH_{11}^{-1}H_{12}>0\). Likewise, G is positive definite if \(H_{11}\) is positive definite and

$$\begin{aligned} \left( \begin{bmatrix} x \\ u \end{bmatrix}^T \begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} -1\right) - \left( \begin{bmatrix} H_{11} \\ H^T_{12} \end{bmatrix}^T\begin{bmatrix} x \\ u\end{bmatrix}\right) ^TH_{11}^{-1}\left( \begin{bmatrix} H_{11} \\ H^T_{12} \end{bmatrix}^T\begin{bmatrix} x \\ u\end{bmatrix}\right) > 0. \end{aligned}$$

Simplifying this condition for G to be positive definite yields the equivalent inequality \(u^2(H_{22} - H_{12}^TH_{11}^{-1}H_{12}) >1\). To see why this is the case, recall \(S\subseteq \mathcal {E}\times \mathbb {R}_{++}\). Computing the minimum height of a point in S gives \(\min _{({{\bar{x}}},{{\bar{u}}})\in S} {{\bar{u}}} = u - 1/\sqrt{H_{22} - H_{12}^TH_{11}^{-1}H_{12}} >0\). Applying \(\varGamma \) to S and then completing the square in the final line gives the claim as

$$\begin{aligned} \varGamma S&= \left\{ \frac{(x',1)}{u'}\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} x'-x \\ u'-u \end{bmatrix}^T \begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix} \begin{bmatrix} x'-x \\ u'-u \end{bmatrix} \le 1\right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} y'/v'-x \\ 1/v'-u \end{bmatrix}^T \begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix} \begin{bmatrix} y'/v'-x \\ 1/v'-u \end{bmatrix} \le 1\right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} y'-v'x \\ 1-v'u \end{bmatrix}^T \begin{bmatrix} H_{11} &{} H_{12}\\ H_{12}^T &{} H_{22} \end{bmatrix} \begin{bmatrix} y'-v'x \\ 1-v'u \end{bmatrix} \le v'^2\right\} \\&= \left\{ (y',v')\in \mathcal {E}\times \mathbb {R}_{++} \mid \begin{bmatrix} y' \\ v' \end{bmatrix}^T G \begin{bmatrix} y' \\ v' \end{bmatrix} +2H_{12}^Ty'-2(H_{12}^Tx+H_{22}u)v'\le -H_{22}\right\} . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimmer, B. Radial duality part I: foundations. Math. Program. 205, 33–68 (2024). https://doi.org/10.1007/s10107-023-02006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-023-02006-7

Keywords

Mathematics Subject Classification

Navigation