Skip to main content
Log in

Complexity, exactness, and rationality in polynomial optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We focus on rational solutions or nearly-feasible rational solutions that serve as certificates of feasibility for polynomial optimization problems. We show that, under some separability conditions, certain cubic polynomially constrained sets admit rational solutions. However, we show in other cases that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. We extend this idea to various settings including near feasible, but super optimal solutions and detecting rational rays on which a cubic function is unbounded. Lastly, we show that in fixed dimension, the feasibility problem over a set defined by polynomial inequalities is in NP by providing a simple certificate to verify feasibility. We conclude with several related examples of irrationality and encoding size issues in QCQPs and SOCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Throughout we will use the concept of size, or bit encoding length, of rational numbers, vectors, linear inequalities, and formulations. For these standard definitions we refer the reader to Section 2.1 in [32].

  2. Constraint (5g) as written is cubic, but is equivalent to three quadratic constraints by defining new variables \(y_{12} = y_1^2, \quad y_{22} = y_2^2\), and rewriting the constraint as \(-n^5 \sum _{j = 1}^{n} x_j^2 \, + \, y_{12} y_1 + y_{22} y_2 - 6 y_1y_2 + 4 \, - \, s \ \le \ -n^6\).

  3. We stress that (7) is a maximization problem.

  4. A numerical solver might yield a vector \(y^*\) that is near-binary, i.e. within a small tolerance. The analysis below is easily adjusted to handle such an eventuality.

  5. Recall that \(y^*\) is binary.

References

  1. Albu, T.: The irrationality of sums of radicals via cogalois theory. Analele stiintifice ale Universitatii Ovidius Constanta 19(2), 15–36 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andronov, V., Belousov, E., Shironin, V.M.: On solvability of the problem of polynomial programming (in russian). Izvestija Akadem. Nauk SSSR, Tekhnicheskaja Kibernetika [Translation appeared in News of the Academy of Science of USSR, Dept. of Technical Sciences, Technical Cybernetics] 4, 194–197 (1982)

  4. Barvinok, A.: Feasibility testing for systems of real quadratic equations. Disc. Comput. Geom. 10, 1–13 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, S.: Algorithms in real algebraic geometry: a survey (2014)

  6. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006). https://doi.org/10.1007/3-540-33099-2

    Book  MATH  Google Scholar 

  7. Belousov, E., Andronov, V.: Solvability and stability of problems of polynomial programming (in russian). Technical report. Moscow University Publ., Moscow (1993)

  8. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific (1997)

  9. Bienstock, D.: A note on polynomial solvability of the CDT problem. SIAM J. Optim. 26, 486–496 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer (2006)

  11. De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility certificates for combinatorial problems through Hilbert’s Nullstellensatz. J. Symbol. Comput. 46(11), 1260–1283 (2011). https://doi.org/10.1016/j.jsc.2011.08.007

    Article  MathSciNet  MATH  Google Scholar 

  12. Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in NP. Math. Program. 162(1–2), 225–240 (2016). https://doi.org/10.1007/s10107-016-1036-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Quart. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  14. Geronimo, G., Perrucci, D., Tsigaridas, E.: On the minimum of a polynomial function on a basic closed semialgebraic set and applications. SIAM J. Optim. 23(1), 241–255 (2013). https://doi.org/10.1137/110857751

    Article  MathSciNet  MATH  Google Scholar 

  15. Grigoriev, D., Vorobjov, N.: Complexity of Null- and Positivstellensatz proofs. Ann. Pure Appl. Logic 113(1), 153–160 (2001). https://doi.org/10.1016/S0168-0072(01)00055-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Heubach, S., Mansour, T.: Combinatorics of Compositions and Words. Discrete Mathematics and Its Applications. CRC Press (2009)

  17. Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization problems. Ann. Oper. Res. 153(1), 257–296 (2007). https://doi.org/10.1007/s10479-007-0172-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984). https://doi.org/10.1007/bf02579150

    Article  MathSciNet  MATH  Google Scholar 

  19. Karmarkar, N.: An interior-point approach to NP-complete problems (1989) (manuscript)

  20. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Comput. Math. Phys. 20(1), 53–72 (1980). https://doi.org/10.1016/0041-5553(80)90061-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Klatte, D.: On a Frank–Wolfe type theorem in cubic optimization. Optimization 68(2–3), 539–547 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Letchford, A., Parkes, A.J.: A guide to conic optimisation and its applications. RAIRO Oper. Res. 1087–1106 (2018)

  23. O’Donnell, R.: SOS is not obviously automatizable, even approximately. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 67, pp. 59:1–59:10. Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.59

  24. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991). https://doi.org/10.1007/BF00120662

    Article  MathSciNet  MATH  Google Scholar 

  25. Pataki, G., Touzov, A.: How do exponential size solutions arise in semidefinite programming? (2021)

  26. Pólik, S., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ramana, M.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77, 129–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries the geometry of semi-algebraic sets the decision problem for the existential theory of the reals. J. Symbol. Comput. 13, 255–299 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Renegar, J.: On the computational complexity of approximating solutions for real algebraic formulae. SIAM J. Comput. 21, 1008–1025 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Renegar, J.: Recent progress on the complexity of the decision problem for the reals. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 220–241. Springer, Vienna (1998)

    Chapter  Google Scholar 

  31. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999). https://doi.org/10.1007/s002000050114

    Article  MathSciNet  MATH  Google Scholar 

  32. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  33. Vavasis, S., Zippel, R.: Proving polynomial-time for sphere-constrained quadratic programming. Technical Report 90-1182. Department of Computer Science, Cornell University (1990)

  34. Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36(2), 73–77 (1990). https://doi.org/10.1016/0020-0190(90)90100-C

    Article  MathSciNet  MATH  Google Scholar 

  35. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput. Optim. Appl. 53, 823–844 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ye, Y.: A new complexity result on minimization of a quadratic function with a sphere constraint. In: Floudas, A., Pardalos, P. (eds.) Recent Advances in Global Optimization, pp. 19–31. Princeton University Press, Princeton (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hildebrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Del Pia is partially funded by ONR Grant N00014-19-1-2322. D. Bienstock is partially funded by ONR Grant N00014-16-1-2889. R. Hildebrand is partially funded by ONR Grant N00014-20-1-2156 and by AFOSR Grant FA9550-21-0107. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research or the Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bienstock, D., Pia, A.D. & Hildebrand, R. Complexity, exactness, and rationality in polynomial optimization. Math. Program. 197, 661–692 (2023). https://doi.org/10.1007/s10107-022-01818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01818-3

Keywords

Navigation