Skip to main content
Log in

Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present a method to solve two-stage stochastic linear programming problems with fixed recourse when the uncertainty space can have either discrete or continuous distributions. Given a partition of the uncertainty space, the method is addressed to solve a discrete problem with one scenario for each element of the partition (subregions of the uncertainty space). Fixing first-stage variables, we formulate a second-stage subproblem for each element, and exploiting information from the dual of these problems, we provide conditions that the partition must satisfy to obtain an optimal solution. These conditions provide guidance on how to refine the partition, iteratively approaching an optimal solution. The results from computational experiments show how the method automatically refines the partition of the uncertainty space in the regions of interest for the problem. Our algorithm is a generalization of the adaptive partition-based method presented by Song and Luedtke for discrete distributions, extending its applicability to more general cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angulo, G., Ahmed, S., Dey, S.S.: Improving the integer L-shaped method. INFORMS J. Comput. 28(3), 483–499 (2016). https://doi.org/10.1287/ijoc.2016.0695

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barik, S., Biswal, M.P., Chakravarty, D.: Two-stage stochastic programming problems involving some continuous random variables. J. Uncertain Syst. 7(4), 277–288 (2013)

    Google Scholar 

  4. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990). https://doi.org/10.2307/2582903

    Article  Google Scholar 

  5. Bienstock, D., Zuckerberg, M.: Solving LP relaxations of large-scale precedence constrained problems. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 1–14. Springer (2010). https://doi.org/10.1007/978-3-642-13036-6_1

  6. Birge, J.R., Wets, R.J.B.: Designing approximation schemes for stochastic optimization problems. In: Particular for Stochastic Programs with Recourse, pp. 54–102. Springer, Berlin (1986). https://doi.org/10.1007/BFb0121114

  7. Botev, Z.I.: The normal law under linear restrictions: simulation and estimation via minimax tilting. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 79(1), 125–148 (2017). https://doi.org/10.1111/rssb.12162

    Article  MathSciNet  MATH  Google Scholar 

  8. Crainic, T.G., Maggioni, F., Perboli, G., Rei, W.: Reduced cost-based variable fixing in two-stage stochastic programming. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-2942-8

    Article  Google Scholar 

  9. Edirisinghe, N.C.P., Ziemba, W.T.: Tight bounds for stochastic convex programs. Oper. Res. 40(4), 660–677 (1992). https://doi.org/10.1287/opre.40.4.660

    Article  MathSciNet  MATH  Google Scholar 

  10. Edmundson, H.: Bounds on the expectation of a convex function of a random variable. Tech. rep., The RAND Corporation (1956)

  11. Espinoza, D., Moreno, E.: A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs. Comput. Optim. Appl. 59(3), 617–638 (2014). https://doi.org/10.1007/s10589-014-9692-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16(3), 650–669 (1991). https://doi.org/10.1287/moor.16.3.650

    Article  MathSciNet  MATH  Google Scholar 

  13. Homem-de-Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19(1), 56–85 (2014). https://doi.org/10.1016/j.sorms.2014.05.001

    Article  MathSciNet  Google Scholar 

  14. Kall, P., Mayer, J.: Stochastic Linear Programming. International Series in Operations Research & Management Science, vol. 156, 2nd edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  15. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002). https://doi.org/10.1137/S1052623499363220

    Article  MathSciNet  MATH  Google Scholar 

  16. Lagos, G., Espinoza, D., Moreno, E., Vielma, J.P.: Restricted risk measures and robust optimization. Eur. J. Oper. Res. 241(3), 771–782 (2015). https://doi.org/10.1016/j.ejor.2014.09.024

    Article  MathSciNet  MATH  Google Scholar 

  17. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995). https://doi.org/10.1007/BF01585555

    Article  MathSciNet  MATH  Google Scholar 

  18. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142(1), 215–241 (2006). https://doi.org/10.1007/s10479-006-6169-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Louveaux, F.V., Smeers, Y.: Optimal investments for electricity generation: a stochastic model and a test problem. In: Ermoliev, Y., Wets, R.J.B. (eds.) Numerical Techniques for Stochastic Optimization Problems. Springer, Berlin (1988)

    MATH  Google Scholar 

  20. Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30(3), 743–746 (1959). https://doi.org/10.1214/aoms/1177706203

  21. Muñoz, G., Espinoza, D., Goycoolea, M., Moreno, E., Queyranne, M., Letelier, O.R.: A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling. Comput. Optim. Appl. 69(2), 501–534 (2018). https://doi.org/10.1007/s10589-017-9946-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21(2), 517–544 (2011). https://doi.org/10.1137/100808289

    Article  MathSciNet  MATH  Google Scholar 

  23. Pay, B.S., Song, Y.: Partition-based decomposition algorithms for two-stage stochastic integer programs with continuous recourse. Ann. Oper. Res. (2017). https://doi.org/10.1007/s10479-017-2689-7

    Article  MATH  Google Scholar 

  24. Pereira, M.V., Pinto, L.M.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991). https://doi.org/10.1007/BF01582895

    Article  MathSciNet  MATH  Google Scholar 

  25. Rahmaniani, R., Crainic, T., Gendreau, M., Rei, W.: A benders decomposition method for two-stage stochastic network design problems. Tech. Rep. CIRRELT-2017-22, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (2017)

  26. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: Accelerating the benders decomposition method: application to stochastic network design problems. SIAM J. Optim. 28(1), 875–903 (2018). https://doi.org/10.1137/17M1128204

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahmaniani, R., Crainic, T.G., Gendreau, M., Rei, W.: An asynchronous parallel benders decomposition method. Tech. Rep. CIRRELT-2019-49, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (2019)

  28. Rockafellar, R.T., Uryasev, S., et al.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000). https://doi.org/10.21314/JOR.2000.038

    Article  Google Scholar 

  29. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991). https://doi.org/10.1287/moor.16.1.119

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35(3), 309–333 (1986). https://doi.org/10.1007/BF01580883

    Article  MathSciNet  MATH  Google Scholar 

  31. Ryan, K., Rajan, D., Ahmed, S.: Scenario decomposition for 0-1 stochastic programs: improvements and asynchronous implementation. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops, pp. 722–729. IEEE (2016). https://doi.org/10.1109/IPDPSW.2016.119

  32. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  33. Siddig, M., Song, Y.: Adaptive partition-based SDDP algorithms for multistage stochastic linear programming. Tech. rep. (2019). arXiv:1908.11346

  34. Song, Y., Luedtke, J.: An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. SIAM J. Optim. 25(3), 1344–1367 (2015). https://doi.org/10.1137/140967337

    Article  MathSciNet  MATH  Google Scholar 

  35. van Ackooij, W., de Oliveira, W., Song, Y.: Adaptive partition-based level decomposition methods for solving two-stage stochastic programs with fixed recourse. INFORMS J. Comput. 30(1), 57–70 (2017). https://doi.org/10.1287/ijoc.2017.0765

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). https://doi.org/10.1137/0117061

    Article  MathSciNet  MATH  Google Scholar 

  37. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008). https://doi.org/10.1287/ijoc.1070.0256

    Article  MathSciNet  MATH  Google Scholar 

  38. Watson, J.P., Woodruff, D.L.: Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. CMS 8(4), 355–370 (2011). https://doi.org/10.1007/s10287-010-0125-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolf, C., Fábián, C.I., Koberstein, A., Suhl, L.: Applying oracles of on-demand accuracy in two-stage stochastic programming—a computational study. Eur. J. Oper. Res. 239(2), 437–448 (2014). https://doi.org/10.1016/j.ejor.2014.05.010

    Article  MathSciNet  MATH  Google Scholar 

  40. Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced benders decomposition. Math. Program. Comput. 4(3), 211–238 (2012). https://doi.org/10.1007/s12532-012-0038-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Moreno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by ANID/CONICYT-Fondecyt Regular 1161064 and 1200809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Pico, C., Moreno, E. Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse. Math. Program. 196, 755–774 (2022). https://doi.org/10.1007/s10107-020-01609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01609-8

Keywords

Mathematics Subject Classification

Navigation