Skip to main content
Log in

On approximation algorithms for concave mixed-integer quadratic programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Concave mixed-integer quadratic programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe an algorithm that finds an \(\epsilon \)-approximate solution to a concave mixed-integer quadratic programming problem. The running time of the proposed algorithm is polynomial in the size of the problem and in \(1/\epsilon \), provided that the number of integer variables and the number of negative eigenvalues of the objective function are fixed. The running time of the proposed algorithm is expected unless \(\mathcal {P}=\mathcal {NP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994)

    Article  MathSciNet  Google Scholar 

  2. Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. In: Billera, L., Björner, A., Greene, C., Simion, R., Stanley, R. (eds.) New Perspectives in Algebraic Combinatorics, Mathematical Sciences Research Institute Publications, vol. 38, pp. 91–147. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  3. Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program. In: Pardalos, P. (ed.) Complexity in Numerical Optimization. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  4. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)

    MATH  Google Scholar 

  5. Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)

    Article  MathSciNet  Google Scholar 

  6. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47(1–3), 155–174 (1990)

    Article  Google Scholar 

  7. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume enumeration. Ph.D. thesis, Georgia Institute of Technology (2012)

  8. Dax, A., Kaniel, S.: Pivoting techniques for symmetric Gaussian elimination. Numer. Math. 28, 221–241 (1977)

    Article  MathSciNet  Google Scholar 

  9. De Loera, J., Hemmecke, R., Köppe, M., Weismantel, R.: FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension. Math. Program. Ser. A 118, 273–290 (2008)

    Article  MathSciNet  Google Scholar 

  10. Del Pia, A.: On approximation algorithms for concave mixed-integer quadratic programming. In: Proceedings of IPCO 2016, Lecture Notes in Computer Science, vol. 9682, pp. 1–13 (2016)

  11. Del Pia, A., Dey, S., Molinaro, M.: Mixed-integer quadratic programming is in NP. Math. Program. Ser. A 162(1), 225–240 (2017)

    Article  MathSciNet  Google Scholar 

  12. Floudas, C., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization, Nonconvex Optimization and Its Applications, vol. 2, pp. 217–269. Springer, New York (1995)

    Chapter  Google Scholar 

  13. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  Google Scholar 

  14. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Hartmann, M.: Cutting planes and the complexity of the integer hull. Technical Report 819, School of Operations Research and Industrial Engineering, Cornell University (1989)

  16. Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-integer hull of a polyhedron. Oper. Res. Lett. 43, 279–282 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hildebrand, R., Weismantel, R., Zemmer, K.: An FPTAS for minimizing indefinite quadratic forms over integers in polyhedra. In: Proceedings of SODA 2015 (2015)

  18. Khachiyan, L.: A polynomial algorithm in linear programming (in Russian). Doklady Akademii Nauk SSSR 244, 1093–1096 (1979). (English translation: Soviet Mathematics Doklady, 20:191–194, 1979)

  19. de Klerk, E., Laurent, M., Parrilo, P.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comput. Sci. 361, 210–225 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lenstra, H.J.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  21. Meyer, R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7(1), 223–235 (1974)

    Article  MathSciNet  Google Scholar 

  22. Murty, K., Kabadi, S.: Some NP-complete problems in quadratic and linear programming. Math. Program. 39, 117–129 (1987)

    Article  Google Scholar 

  23. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, Chichester (1983). Translated by E.R. Dawson from Slozhnost’ Zadach i Effektivnost’ Metodov Optimizatsii (1979)

  24. Onn, S.: Convex discrete optimization. In: Chvátal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 183–228. IOS Press, Amsterdam (2011)

    MATH  Google Scholar 

  25. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. Proceedings of the 41st Annual Symposium on Foundations of Computer Science. FOCS ’00, pp. 86–92. IEEE Computer Society, Washington, DC, USA (2000)

  26. Pardalos, P., Rosen, J.: Constrained Global Optimization: Algorithms and Applications. Lecture Notes in Computer Science, vol. 268. Springer, Berlin (1987)

    Book  Google Scholar 

  27. Pardalos, P., Vavasis, S.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  28. Rosen, J., Pardalos, P.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986)

    Article  MathSciNet  Google Scholar 

  29. Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)

    Article  MathSciNet  Google Scholar 

  30. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  31. Vavasis, S.: Quadratic programming is in NP. Inf. Process. Lett. 36, 73–77 (1990)

    Article  MathSciNet  Google Scholar 

  32. Vavasis, S.: Approximation algorithms for indefinite quadratic programming. Math. Program. 57, 279–311 (1992)

    Article  MathSciNet  Google Scholar 

  33. Vavasis, S.: On approximation algorithms for concave quadratic programming. In: Floudas, C., Pardalos, P. (eds.) Recent Advances in Global Optimization, pp. 3–18. Princeton University Press, Princeton (1992)

    Google Scholar 

  34. Vavasis, S.: Polynomial time weak approximation algorithms for quadratic programming. In: Pardalos, P. (ed.) Complexity in Numerical Optimization. World Scientific, Singapore (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Del Pia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pia, A. On approximation algorithms for concave mixed-integer quadratic programming. Math. Program. 172, 3–16 (2018). https://doi.org/10.1007/s10107-017-1178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1178-8

Keywords

Mathematics Subject Classification

Navigation