Skip to main content
Log in

Solving Conic Systems via Projection and Rescaling

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a simple projection and rescaling algorithm to solve the feasibility problem

$$\begin{aligned} \text { find } x \in L \cap \Omega , \end{aligned}$$

where L and \(\Omega \) are respectively a linear subspace and the interior of a symmetric cone in a finite-dimensional vector space V. This projection and rescaling algorithm is inspired by previous work on rescaled versions of the perceptron algorithm and by Chubanov’s projection-based method for linear feasibility problems. As in these predecessors, each main iteration of our algorithm contains two steps: a basic procedure and a rescaling step. When \(L \cap \Omega \ne \emptyset \), the projection and rescaling algorithm finds a point \(x \in L \cap \Omega \) in at most \(\mathcal {O}(\log (1/\delta (L \cap \Omega )))\) iterations, where \(\delta (L \cap \Omega ) \in (0,1]\) is a measure of the most interior point in \(L \cap \Omega \). The ideal value \(\delta (L\cap \Omega ) = 1\) is attained when \(L \cap \Omega \) contains the center of the symmetric cone \(\Omega \). We describe several possible implementations for the basic procedure including a perceptron scheme and a smooth perceptron scheme. The perceptron scheme requires \(\mathcal {O}(r^4)\) perceptron updates and the smooth perceptron scheme requires \(\mathcal {O}(r^2)\) smooth perceptron updates, where r stands for the Jordan algebra rank of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6(3), 382–392 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahipasaoglu, S., Sun, P., Todd, M.: Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim. Methods Softw. 23(1), 5–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baes, M.: Spectral Functions and Smoothing Techniques on Jordan Algebras: How Algebraic Techniques can Help to Design Efficient Optimization Algorithms. Lambert Academic Publishing, Saarbrücken (2009)

    Google Scholar 

  4. Basu, A., De Loera, J.A., Junod, M.: On Chubanov’s method for linear programming. INFORMS J. Comput. 26(2), 336–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, A., Shtern, S.: Linearly convergent away-step conditional gradient for non-strongly convex functions. Math. Program. 159(1,2), 1–27 (2016). doi:10.1007/s10107-016-1069-4

  6. Belloni, A., Freund, R., Vempala, S.: An efficient rescaled perceptron algorithm for conic systems. Math. Oper. Res. 34(3), 621–641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary solution. Math. Program. 134, 533–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chubanov, S.: A polynomial projection algorithm for linear feasibility problems. Math. Program. 153, 687–713 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dantzig, G.B.: An \(\epsilon \)-precise feasible solution to a linear program with a convexity constraint in \(\frac{1}{\epsilon ^2}\) iterations independent of problem size. Technical report, Stanford University (1992)

  10. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving linear programs. Math. Program. 114(1), 101–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Epelman, M., Freund, R.: A new condition measure, preconditioners, and relations between different measures of conditioning for conic linear systems. SIAM J. Optim. 12, 627–655 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Epelman, M., Freund, R.M.: Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system. Math. Program. 88(3), 451–485 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)

  14. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank-Wolfe optimization variants. Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS 2015). Curran Associates, Inc., New York, pp. 496–504 (2015)

  15. Li, D., Roos, C., Terlaky, T.: A polynomial column-wise rescaling von Neumann algorithm. Technical report, Lehigh University (2015)

  16. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can. J. Math. 6(3), 393–404 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  18. Peña, J., Rodríguez, D., Soheili, N.: On the von Neumann and Frank–Wolfe algorithms with away steps. SIAM J. Optim. 26(1), 499–512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peña, J., Roshchina, V., Soheili, N.: Some preconditioners for systems of linear inequalities. Optim Lett 8(7), 2145–2152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peña, J., Soheili, N.: A deterministic rescaled perceptron algorithm. Math. Program. 155(1–2), 497–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roos, C.: An improved version of Chubanov’s method for solving a homogeneous feasibility problem. Technical report, Delft University of Technology (2015)

  22. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  Google Scholar 

  23. Schmieta, S., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmieta, S., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96(3), 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soheili, N., Peña, J.: A smooth perceptron algorithm. SIAM J. Optim. 22(2), 728–737 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soheili, N., Peña, J.: A primal–dual smooth perceptron–von Neumann algorithm. In: Bezdek, K., Ye, Y., Deza, A. (eds.) Discrete Geometry and Optimization, Fields institute communications, 69. Springer, pp. 303–320 (2013)

Download references

Acknowledgements

Javier Peña’s research has been funded by NSF grant CMMI-1534850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña, J., Soheili, N. Solving Conic Systems via Projection and Rescaling. Math. Program. 166, 87–111 (2017). https://doi.org/10.1007/s10107-016-1105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1105-4

Keywords

Mathematics Subject Classification

Navigation