Skip to main content

Advertisement

Log in

S-lemma with equality and its applications

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \(f(x)=x^TAx+2a^Tx+c\) and \(h(x)=x^TBx+2b^Tx+d\) be two quadratic functions having symmetric matrices \(A\) and \(B\). The S-lemma with equality asks when the unsolvability of the system \(f(x)<0, h(x)=0\) implies the existence of a real number \(\mu \) such that \(f(x) + \mu h(x)\ge 0, ~\forall x\in \mathbb {R}^n\). The problem is much harder than the inequality version which asserts that, under Slater condition, \(f(x)<0, h(x)\le 0\) is unsolvable if and only if \(f(x) + \mu h(x)\ge 0, ~\forall x\in \mathbb {R}^n\) for some \(\mu \ge 0\). In this paper, we show that the S-lemma with equality does not hold only when the matrix \(A\) has exactly one negative eigenvalue and \(h(x)\) is a non-constant linear function (\(B=0, b\not =0\)). As an application, we can globally solve \(\inf \{f(x): h(x)=0\}\) as well as the two-sided generalized trust region subproblem \(\inf \{f(x): l\le h(x)\le u\}\) without any condition. Moreover, the convexity of the joint numerical range \(\{(f(x), h_1(x),\ldots , h_p(x)):x\in \mathbb R^n\}\) where \(f\) is a (possibly non-convex) quadratic function and \(h_1(x),\ldots ,h_p(x)\) are affine functions can be characterized using the newly developed S-lemma with equality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M., Wright, M.H.: A note on the augmented Hessian when the reduced Hessian is semidefinite. SIAM J. Optim. 11(1), 243–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A.: On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of ball. J. Global Optim. 39, 113–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraint. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. Ser. A. 143, 1–9 (2014)

    Article  MATH  Google Scholar 

  5. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72, 51–63 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Brickman, L.: On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61–66 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Derinkuyu, K., Pınar, M.Ç.: On the S-procedure and some variants. Math. Meth. Oper. Res. 64, 55–77 (2006)

    Article  MATH  Google Scholar 

  8. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MathSciNet  Google Scholar 

  9. Fang, S.C., Gao, D.Y., Lin, G.X., Sheu, R.L., Xing, W.: Double well potential function and its optimization in the n-dimenstional real space—Part I. Math. Mech. Solids (2015). doi:10.1177/1081286514566704

  10. Feng, J.M., Lin, G.X., Sheu, R.L., Xia, Y.: Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint. J. Global Optim. 54(2), 275–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Finsler, P.: Über das vorkommen definiter und semidefiniter Formen in scharen quadratischer Formen. Comment. Math. Helv. 9, 188–192 (1937)

    Article  MathSciNet  Google Scholar 

  12. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and the duality relation in convex quadratic programming problems. Vestnik Leningrad. Univ. 1, 81–87 (1973)

    Google Scholar 

  13. Hestenes, M.R.: Optimization Theory. Wiley, New York (1975)

    MATH  Google Scholar 

  14. Hmam, H.: Quadratic optimization with one quadratic equality constraint. Electronic Warfare and Radar Division DSTO Defence Science and Technology Organisation, Australia, Report DSTO-TR-2416 (2010)

  15. Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  16. Hsia, Y., Lin, G.X., Sheu, R.L.: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil. Pac. J. Optim. 10(3), 461–481 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeyakumar, V.: Farkas lemma: generalizations. Encycl. Optim. 2, 87–91 (2000)

    Google Scholar 

  19. Jeyakumar, V., Huy, N.Q., Li, G.: Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization. Optim. Eng. 10, 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeyakumar, V., Lee, G.M., Li, G.Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20(2), 983–1001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147(1–2), 171–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martínez-Legaz, J.E.: On Brickman’s theorem. J. Convex Anal. 12, 139–143 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  24. Nguyen, V.B., Sheu, R.L., Xia, Y.: An SDP approach for quadratic fractional problems with a two-sided quadratic constraint. Optim. Methods Softw. (2015). doi:10.1080/10556788.2015.1029575

    Google Scholar 

  25. Palanthandalam-Madapusi, H.J., Pelt, T.H.V., Bernstein, D.S.: Matrix pencils and existence conditions for quadratic programming with a sign-indefinite quadratic equality constraint. J. Global Optim. 45(4), 533–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polyak, B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory App. 99(3), 553–583 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pong, T.K., Wolkowicz, H.: The generalized trust region subprobelm. Comput. Optim. Appl. 58(2), 273–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Sturm, J.F., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)

    Article  MathSciNet  Google Scholar 

  31. Sturm, J.F., Zhang, S.: On cones of nonnegtive quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tuy, H., Tuan, H.D.: Generalized S-lemma and strong duality in nonconvex quadratic programming. J. Global Optim. 56(3), 1045–1072 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, S., Xia, Y.: Strong duality for generalized trust region subproblem: S-lemma with interval bounds. Optim. Lett. (2014). doi:10.1007/s11590-014-0812-0

  34. Xia, Y., Sheu, R.L., Fang, S.C., Xing, W.: Double well potential function and its optimization in the n-dimenstional real space—Part II. Math. Mech. Solids (2015). doi:10.1177/1081286514566723

  35. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningrad. Univ. 1, 62–77 (1971). (in Russian)

    Google Scholar 

  36. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestnik Leningrad. Univ. 4, 73–93 (1977). (English translation)

    Google Scholar 

  37. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Lin Sheu.

Additional information

This research was supported by Taiwan National Science Council under Grant 102-2115-M-006-010, by National Center for Theoretical Sciences (South), by National Natural Science Foundation of China under grant 11471325 and by Beijing Higher Education Young Elite Teacher Project 29201442.

Appendix

Appendix

We discuss the relations among S-Conditions 1,2,3 and 4. First, it is easy to see that the definiteness of \(B\) implies \(A \succeq \eta B\) for some \(\eta .\) Therefore,

$$\begin{aligned} \mathrm{S\text {-}Condition\ 1} ~\Longrightarrow ~\mathrm{S\text {-}Condition\ 2}. \end{aligned}$$

Moreover, when \(B\) is definite, \(x^TBx=0\) if and only if \(x=0\) and thus

$$\begin{aligned} \mathrm{S\text {-}Condition\ 1} ~\Longrightarrow ~\mathrm{S\text {-}Condition\ 4}. \end{aligned}$$

When \(h(x)\) is homogeneous, there is \(b=d=0\) so that \(h(0)=0.\) By choosing \(\zeta =0\),

$$\begin{aligned} \mathrm{S\text {-}Condition\ 3} ~\Longrightarrow ~\mathrm{S\text {-}Condition\ 4}. \end{aligned}$$

It is not difficult to verify that neither S-Condition 2 nor S-Condition 4 can imply each other [24]. Consequently, neither S-Condition 2 nor S-Condition 4 is necessary for the S-lemma with equality.

We now show that the statement (4) in S-Condition 4 can be equivalently simplified as

$$\begin{aligned} \left\{ \begin{array}{ll}b\in \mathcal {R}(B),&{}\quad \text {if}~B\succeq 0~ \text {or}~B\preceq 0,\\ B\zeta +b=0,&{}\quad \text {otherwise}. \end{array}\right. \end{aligned}$$
(64)

Notice that (64) trivially implies (4), so it is sufficient to prove the converse.

Suppose \(B\succeq 0\) or \(B\preceq 0\). Then, \(x^TBx=0 ~\Longleftrightarrow ~ Bx=0\) and (4) can be recast as

$$\begin{aligned} Bx=0 ~\Longrightarrow ~ b^Tx=0,~\forall x\in \mathbb {R}^n, \end{aligned}$$

which shows that \(b\in \mathcal {R}(B)\).

Now assume that \(B\) is indefinite. We first rewrite (4) by

$$\begin{aligned} x^TBx=0 ~\Longrightarrow ~x^T(B\zeta +b)(B\zeta +b)^Tx=0,~\forall x\in \mathbb {R}^n. \end{aligned}$$

Since \((B\zeta +b)(B\zeta +b)^T\succeq 0\), it is further equivalent to

$$\begin{aligned} x^TBx=0 ~\Longrightarrow ~ -x^T(B\zeta +b)(B\zeta +b)^Tx\ge 0,~\forall x\in \mathbb {R}^n. \end{aligned}$$

Since \(B\) is indefinite, \(h(x)=x^TBx\) takes both positive and negative values. By the S-lemma with equality for homogeneous quadratic forms,

$$\begin{aligned} (\exists \mu \in \mathbb R)~~~-(B\zeta +b)(B\zeta +b)^T+\mu B \succeq 0. \end{aligned}$$
(65)

Since \(\mu B \succeq (B\zeta +b)(B\zeta +b)^T \succeq 0\) and \(B\) is indefinite, it must be \(\mu =0\) and thus \((B\zeta +b)(B\zeta +b)^T=0\). It implies that \(B\zeta +b=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Wang, S. & Sheu, RL. S-lemma with equality and its applications. Math. Program. 156, 513–547 (2016). https://doi.org/10.1007/s10107-015-0907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0907-0

Keywords

Mathematics Subject Classification

Navigation