Skip to main content
Log in

An energy efficiency assessment of Yttrium–aluminum-garnet laser in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To study the effect range of the Nd:YAG laser through various levels of cloudy medium for targets with varying grayscale values in vitro. The coated paper cards with grayscale values of 0, 50, 100, and 150 were used as the laser's targets, which were struck straightly with varying energies using three burst modes (single pulse, double pulse, and triple pulse). Six filters (transmittances of 40, 50, 60, 70, 80, and 90) were applied to simulate various levels of cloudy refractive medium. Image J software was used to measure the diameters and regions of the laser spots. The ranges of the Nd:YAG laser spots increased with energy in the same burst mode (P < 0.05). Under the same amount of energy, the ranges of the Nd:YAG laser spot increased with the grayscale value of the targets (P < 0.05). The greater the transmittance of the filters employed, the larger the range of the Nd: YAG laser spots produced. Assuming that the total pulse energy is identical, the effect ranges of multi-pulse burst modes were significantly larger than those of single-pulse burst mode (P < 0.05). The effect range of a Nd:YAG laser grows with increasing energy and the target's grayscale value. A cloudy refractive medium has a negative impact on the effect range of the Nd: YAG laser. The single pulse mode has the narrowest and safest efficiency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supporting the finding of this study are available from the corresponding author upon reasonable request.

References

  1. Karahan E, Er D, Kaynak S (2014) An Overview of Nd:YAG Laser Capsulotomy. Med Hypothesis Discov Innov Ophthalmol 3:45–50

    PubMed  PubMed Central  Google Scholar 

  2. Tan Y, Zhang J, Li W et al (2022) Refraction Shift After Nd:YAG Posterior Capsulotomy in Pseudophakic Eyes: A Systematic Review and Meta-analysis. J Refract Surg 38:465–473. https://doi.org/10.3928/1081597X-20220516-01

    Article  PubMed  Google Scholar 

  3. Han Y (2022) Evolution of Management on Primary Angle-Closure Suspect: Observation versus Laser Peripheral Iridectomy. Ophthalmology 129:159–160. https://doi.org/10.1016/j.ophtha.2021.09.020

    Article  PubMed  Google Scholar 

  4. He M, Jiang Y, Huang S et al (2019) Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial. Lancet 393:1609–1618. https://doi.org/10.1016/S0140-6736(18)32607-2

    Article  PubMed  Google Scholar 

  5. Shah CP, Heier JS (2017) YAG Laser Vitreolysis vs Sham YAG Vitreolysis for Symptomatic Vitreous Floaters: A Randomized Clinical Trial. JAMA Ophthalmol 135:918–923. https://doi.org/10.1001/jamaophthalmol.2017.2388

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ludwig GD, Gemelli H, Nunes GM et al (2021) Efficacy and safety of Nd:YAG laser vitreolysis for symptomatic vitreous floaters: A randomized controlled trial. Eur J Ophthalmol 31:909–914. https://doi.org/10.1177/1120672120968762

    Article  PubMed  Google Scholar 

  7. Lin T, Li T, Zhang X et al (2022) The Efficacy and Safety of YAG Laser Vitreolysis for Symptomatic Vitreous Floaters of Complete PVD or Non-PVD. Ophthalmol Ther 11:201–214. https://doi.org/10.1007/s40123-021-00422-6

    Article  PubMed  Google Scholar 

  8. Yu S, Lu C, Tang X et al (2018) Application of Spectral Domain Optical Coherence Tomography to Objectively Evaluate Posterior Capsular Opacity In Vivo. J Ophthalmol 2018:5461784. https://doi.org/10.1155/2018/5461784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu SS, Lu CZ, Guo YW et al (2021) Anterior segment OCT application in quantifying posterior capsule opacification severity with varied intraocular lens designs. Int J Ophthalmol 14:1384–1391. https://doi.org/10.18240/ijo.2021.09.13

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu BY, Friedman DS, Foster PJ et al. Anatomic Changes and Predictors of Angle Widening after Laser Peripheral Iridotomy: The Zhongshan Angle Closure Prevention Trial. Ophthalmology 128:1161–1168 https://doi.org/10.1016/j.ophtha.2021.01.021

  11. Ho T, Fan R (1992) Sequential argon-YAG laser iridotomies in dark irides. Br J Ophthalmol 76:329–331. https://doi.org/10.1136/bjo.76.6.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hahn P, Schneider EW, Tabandeh H et al (2017) Reported Complications Following Laser Vitreolysis. JAMA Ophthalmol 135:973–976. https://doi.org/10.1001/jamaophthalmol.2017.2477

    Article  PubMed  PubMed Central  Google Scholar 

  13. Welch DB, Apple DJ, Mendelsohn AD et al (1986) Lens injury following iridotomy with a Q-switched neodymium-YAG laser. Arch Ophthalmol 104:123–125. https://doi.org/10.1001/archopht.1986.01050130137038

    Article  CAS  PubMed  Google Scholar 

  14. Bhargava R, Kumar P, Phogat H et al (2015) Neodymium-yttrium aluminium garnet laser capsulotomy energy levels for posterior capsule opacification. J Ophthalmic Vis Res 10:37–42. https://doi.org/10.4103/2008-322X.156101

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhuravlyov A (2022) Posterior YAG capsulotomy: selection of the application pattern. Ophthalmologe 119:481–490. https://doi.org/10.1007/s00347-021-01526-x

    Article  CAS  PubMed  Google Scholar 

  16. Drake MV (1987) Neodymium:YAG laser iridotomy. Surv Ophthalmol 32:171–177. https://doi.org/10.1016/0039-6257(87)90092-0

    Article  CAS  PubMed  Google Scholar 

  17. de Silva DJ, Day AC, Bunce C et al (2012) Randomised trial of sequential pretreatment for Nd:YAG laser iridotomy in dark irides. Br J Ophthalmol 96:263–266. https://doi.org/10.1136/bjo.2010.200030

    Article  PubMed  Google Scholar 

  18. Chung HJ, Park HY, Kim SY (2015) Comparison of laser iridotomy using short duration 532-nm Nd: YAG laser (PASCAL) vs conventional laser in dark irides. Int J Ophthalmol 8:288–291. https://doi.org/10.3980/j.issn.2222-3959.2015.02.13

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Silva DJ, Gazzard G, Foster P (2007) Laser iridotomy in dark irides. Br J Ophthalmol 91:222–225. https://doi.org/10.1136/bjo.2006.104315

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kinori M, Jagannathan N, Langguth AM et al (2019) Pediatric Nd:YAG laser capsulotomy in the operating room: review of 87 cases. Int J Ophthalmol 12:779–783. https://doi.org/10.18240/ijo.2019.05.12

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Shi C, Liu Q et al (2023) Spontaneous remission of vision degrading myodesopsia of posterior vitreous detachment type. Graefes Arch Clin Exp Ophthalmol 261:1571–1577. https://doi.org/10.1007/s00417-022-05948-4

    Article  PubMed  Google Scholar 

  22. Jang HW, Chun SH, Park HC et al (2017) Comparative study of dual-pulsed 1064 nm Q-switched Nd:YAG laser and single-pulsed 1064 nm Q-switched Nd:YAG laser by using zebrafish model and prospective split-face analysis of facial melasma. J Cosmet Laser Ther 19:114–123. https://doi.org/10.1080/14764172.2016.1262958

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (RC210267). The funding agencies had no role in the project design, experimental execution, analysis of the results, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LJS, TZL: research design, interpretation of data, critical revision of the manuscript, and final approval of the version to be published. DW: data acquisition and analysis, drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lijun Shen.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Wang, D. & Shen, L. An energy efficiency assessment of Yttrium–aluminum-garnet laser in vitro. Lasers Med Sci 39, 97 (2024). https://doi.org/10.1007/s10103-024-04041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04041-y

Keywords

Navigation