Skip to main content

Advertisement

Log in

Association of Papacarie Duo® and low-level laser in antimicrobial photodynamic therapy (aPDT)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Dental caries is a multifactorial, non-communicable disease. Effective treatment options for minimally invasive removal of carious tissue include Papacarie Duo® gel and antimicrobial photodynamic therapy (aPDT). aPDT involves a combination of a light source and photosensitizer. Given that Papacarie Duo® contains a percentage of blue dye, this study aims to explore the antimicrobial potential of Papacarie Duo® when associated with a light source against Streptococcus mutans strains. The chosen light source was a low-power diode laser (λ = 660 nm, E = 3 J, P = 100 mW, t = 30 s). To assess antimicrobial capacity, planktonic suspensions of Streptococcus mutans were plated on Brain Heart Infusion Agar (BHI) to observe the formation of inhibition halos. The studied groups included methylene blue (0.005%), Papacarie Duo®, distilled water (negative control), 2% chlorhexidine (positive control), Papacarie Duo® + laser, and methylene blue (0.005%) + laser. Following distribution onto plates, each group was incubated at 37 °C for 48 h under microaerophilic conditions. Inhibition halos were subsequently measured using a digital caliper. The results showed that chlorhexidine had the greatest antimicrobial effect followed by the group of irradiated methylene blue and irradiated Papacarie Duo®. All experimental groups demonstrated antimicrobial potential, excluding the negative control group. The study concludes that Papacarie Duo® exhibits antimicrobial properties when associated with a low-power diode laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alsunbul H, Murriky A (2023) Efficacy of methylene blue and curcumin mediated antimicrobial photodynamic therapy in the treatment of indirect pulp capping in permanent molar teeth. Photodiagnosis Photodyn Ther 103598. https://doi.org/10.1016/j.pdpdt.2023.103598

  2. Kwiatkowski S, Knap B, Przystupski D et al (2018) Photodynamic therapy – mechanisms, photosensitizers, and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

    Article  CAS  PubMed  Google Scholar 

  3. Rkein AM, Ozog DM (2014) Photodynamic therapy. Dermatol Clin 32:415–425. https://doi.org/10.1016/j.det.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  4. Sischo L, Broder HL (2011) Photodynamic therapy in dentistry. J Dent Res 90:1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pereira CA, Costa ACBP, Carreira CM et al (2013) Photodynamic inactivation of streptococcus mutans and streptococcus sanguinis biofilms in vitro. Lasers Med Sci 28:859–864. https://doi.org/10.1007/s10103-012-1175-3

    Article  PubMed  Google Scholar 

  6. Späth A, Leibl C, Cieplik F, Lehner K, Regensburger J, Hiller KA, Bäumler W, Schmalz G, Maisch T (2014) Improving photodynamic inactivation of bacteria in dentistry: highly effective and fast killing of oral key pathogens with novel tooth-colored type-II photosensitizers. J Med Chem 57(12):5157–68. https://doi.org/10.1021/jm4019492

    Article  CAS  PubMed  Google Scholar 

  7. Plotino G, Grande NM, Mercade M (2019) Photodynamic therapy in endodontics. Int Endod J 52:760–774. https://doi.org/10.1111/iej.13057

    Article  CAS  PubMed  Google Scholar 

  8. Atta D, Elarif A, Al Bahrawy M (2023) Reactive oxygen species creation by laser-irradiated indocyanine green as photodynamic therapy modality: an in vitro study. Lasers Med Sci 38:1–7. https://doi.org/10.1007/s10103-023-03876-1

    Article  Google Scholar 

  9. Pitts NB, Twetman S, Fisher J, Marsh PD (2021) Understanding dental caries as a non-communicable disease. Br Dent J 231:749–753. https://doi.org/10.1038/s41415-021-3775-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fontana M, Gonzalez-Cabezas C (2019) Evidence-based dentistry caries risk assessment and disease management. Dent Clin North Am 63:119–128. https://doi.org/10.1016/j.cden.2018.08.007

    Article  PubMed  Google Scholar 

  11. Mathur VP, Dhillon JK (2018) Dental caries: a disease which needs attention. Indian J Pediatr 85:202–206. https://doi.org/10.1007/s12098-017-2381-6

    Article  PubMed  Google Scholar 

  12. Martignon S, Roncalli AG, Alvarez E et al (2021) Risk factors for dental caries in Latin American and Caribbean countries. Braz Oral Res 35:1–24. https://doi.org/10.1590/1807-3107BOR-2021.VOL35.0053

    Article  Google Scholar 

  13. Grigalauskienė R, Slabšinskienė E, Vasiliauskienė I (2015) Biological approach of dental caries management. Stomatologija 17:107–112

    PubMed  Google Scholar 

  14. Gao X, Jiang S, Koh D, Hsu CYS (2016) Salivary biomarkers for dental caries. Periodontol 2000(70):128–141. https://doi.org/10.1111/prd.12100

    Article  Google Scholar 

  15. Valm A (2020) The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol 431:2957–2969. https://doi.org/10.1016/j.jmb.2019.05.016.The

    Article  Google Scholar 

  16. Bottega F, Bussadori SK, Battisti IDE et al (2018) Costs and benefits of Papacarie in pediatric dentistry: a randomized clinical trial. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-36092-x

    Article  CAS  Google Scholar 

  17. Bussadori SK, Castro LC, Galvão AC (2005) Papain gel: a new chemo-mechanical caries removal agent. J Clin Pediatr Dent 30:115–119

    Article  PubMed  Google Scholar 

  18. Leite AP, de Oliveira BGRB, Soares MF, Barrocas DLR (2012) Uso e efetividade da papaína no processo de cicatrização de feridas: uma revisão sistemática. Rev Gaúcha Enferm 33:198–207. https://doi.org/10.1590/s1983-14472012000300026

    Article  PubMed  Google Scholar 

  19. Guiraldo RD, Berger SB, Punhagui MF et al (2018) Influence of chloramine-T disinfection on elastomeric impression stability. Eur J Dent 11:192–195. https://doi.org/10.4103/ejd.ejd

    Article  Google Scholar 

  20. Barr H, Tralau CJ, Boulos PB et al (1999) Rat colon tumors using phthalocyanine photodynamic therapy. Gastroenterology 98:1532–1537

    Article  Google Scholar 

  21. Rosenthal I (1991) Yearly review phthalocyanines as photodynamic. Photochemistry Photobiol 53:859–870

    Article  CAS  Google Scholar 

  22. Phoenix DA, Dennison SR, Harris F (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28. https://doi.org/10.1002/9783527676132.ch10

    Article  Google Scholar 

  23. Jiang C, Yang W, Wang C et al (2019) Methylene blue-mediated photodynamic therapy induces macrophage apoptosis via ROS and reduces bone resorption in periodontitis. Oxid Med Cell Longev 2019. https://doi.org/10.1155/2019/1529520

  24. Ramachandran VS, Rathakrishnan M, Ravindrran MB, Alagarsamy V (2022) Comparative evaluation of the antimicrobial effect of mangosteen, triphala, chitosan, and 2% chlorhexidine on mono- and dual-species biofilms of - and Candida albicans: an in vitro study. Eur Endod J 7:58–66. https://doi.org/10.14744/eej.2021.70783

    Article  PubMed  Google Scholar 

  25. Brookes ZLS, Bescos R, Belfield LA et al (2020) Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. https://doi.org/10.1016/j.jdent.2020.103497

  26. Garcia AM, Alarcon E, Muñoz M et al (2011) Photophysical behavior and photodynamic activity of zinc phthalocyanines associated to liposomes. Photochem Photobiol Sci 10:507–514. https://doi.org/10.1039/c0pp00289e

    Article  CAS  PubMed  Google Scholar 

  27. Fournier M, Pépin C, Houde D et al (2004) Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetra sulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors. Photochem Photobiol Sci 3:120–126. https://doi.org/10.1039/b302787b

    Article  CAS  PubMed  Google Scholar 

  28. de Sousa GR, Soares LO, Soares BM et al (2022) In vitro evaluation of physical and chemical parameters involved in aPDT of Aggregatibacter actinomycetemcomitans. Lasers Med Sci 37:391–401. https://doi.org/10.1007/s10103-021-03267-4

    Article  PubMed  Google Scholar 

  29. Zhang LZ, Tang GQ (2004) The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study. J Photochem Photobiol B Biol 74:119–125. https://doi.org/10.1016/j.jphotobiol.2004.03.005

    Article  CAS  Google Scholar 

  30. Mirfasihi A, Afzali BM, Zadeh HE et al (2020) Effect of a combination of photodynamic therapy and chitosan on Streptococcus mutans (an in vitro study). J Lasers Med Sci 11:405–410. https://doi.org/10.34172/JLMS.2020.64

    Article  PubMed  PubMed Central  Google Scholar 

  31. Savolainen N, Kvist T, Mannila J (2022) Cost-effectiveness of partial versus stepwise caries removal of deep caries lesions - a decision-analytic approach. Acta Odontol Scand 81:311–318. https://doi.org/10.1080/00016357.2022.2143893

    Article  PubMed  Google Scholar 

  32. Singh S, Mittal S, Tewari S (2019) Effect of different liners on pulpal outcome after partial caries removal: a preliminary 12 months randomised controlled trial. Caries Res 53:547–554. https://doi.org/10.1159/000499131

    Article  CAS  PubMed  Google Scholar 

  33. Labib ME, Hassanein OE, Moussa M et al (2019) Selective versus stepwise removal of deep carious lesions in permanent teeth: a randomized controlled trial from Egypt - An interim analysis. BMJ Open 9:1–9. https://doi.org/10.1136/bmjopen-2019-030957

    Article  Google Scholar 

  34. Shaik JA, Reddy RK (2017) Review article prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent 8:11–19. https://doi.org/10.4103/ccd.ccd

    Article  Google Scholar 

  35. Maashi MS, Elkhodary HM, Alamoudi NM, Bamashmous NO (2023) Chemomechanical caries removal methods: a literature review. Saudi Dent J 35:233–243. https://doi.org/10.1016/j.sdentj.2023.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cardoso M, Coelho A, Lima R, Amaro I, Paula A, Marto CM, Sousa J, Spagnuolo G, Marques Ferreira M, Carrilho E (2020) Efficacy and patient’s acceptance of alternative methods for caries removal-a systematic review. J Clin Med. 9(11):3407. https://doi.org/10.3390/jcm9113407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pereira AA, Freitas IDC, De Mendonça SMS (2017) A utilização do gel de papaína na remoção de lesões cariosas dentinárias. Rev Odontol da Univ Cid São Paulo 25:68. https://doi.org/10.26843/ro_unicid.v25i1.320

    Article  Google Scholar 

  38. Bastos LA, Silva FL, Thomé JPQ, Arnez MFM, Faccioli LH, Paula-Silva FWG (2019) Effects of papain-based gel used for caries removal on macrophages and dental pulp cells. Braz Dent J 30(5):484–490. https://doi.org/10.1590/0103-6440201902560

    Article  PubMed  Google Scholar 

  39. Li X, Peng XH, De ZB et al (2018) New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy using structural regulation rather than the formation of aggregates. Chem Sci 9:2098–2104. https://doi.org/10.1039/c7sc05115h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Devonshire R, Fowler GJS (1992) Photobleaching of 1,3-diphenylisobenzofuran by novel phthalocyanine dye derivatives. J Photochem Photobiol B Biol 14:177–185

    Article  Google Scholar 

  41. Eldar M, Yerushalmi Y, Kessler E et al (1990) Preferential uptake of a water-soluble phthalocyanine by atherosclerotic plaques in rabbits. Atherosclerosis 84:135–139. https://doi.org/10.1016/0021-9150(90)90083-U

    Article  CAS  PubMed  Google Scholar 

  42. da Mota ACC, Leal CRL, Olivan S et al (2016) Case report of photodynamic therapy in the treatment of dental caries on primary teeth. J Lasers Med Sci 7:131–133. https://doi.org/10.15171/jlms.2016.22

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Foundation for Support to Research and Scientific and Technological Development of Maranhão (FAPEMA), process no. 04981/2018.

Author information

Authors and Affiliations

Authors

Contributions

RJSM: formal analysis, writing—original draft, writing—review and editing, visualization. NMS: conceptualization, methodology, investigation, resources, writing—original draft, writing—review and editing, visualization, funding acquisition. GSF: validation. MABP: supervision, formal analysis. ADNL: resources, writing—original draft, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Roberta Janaina Soares Mendes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The chemical-mechanical technique for partial removal of carious tissue is more effective and better than the manual one in terms of dentin preservation.

2. Photodynamic therapy presents itself as an extra technique for antibacterial action in caries lesions.

3. Papacarie Duo® alone and associated with low-power laser showed that the statistical differences were minimal.

4. Photodynamic therapy is a non-invasive and efficient alternative for the control of antimicrobial activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, R.J.S., de Sousa, N.M., Furtado, G.S. et al. Association of Papacarie Duo® and low-level laser in antimicrobial photodynamic therapy (aPDT). Lasers Med Sci 39, 25 (2024). https://doi.org/10.1007/s10103-024-03981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-03981-9

Keywords

Navigation