Skip to main content
Log in

Quantitative phase imaging for characterization of single cell growth dynamics

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Quantitative phase imaging (QPI) has emerged as an indispensable tool in the field of biomedicine, offering the ability to obtain quantitative maps of phase changes due to optical path length delays without the need for contrast agents. These maps provide valuable information about cellular morphology and dynamics, unperturbed by the introduction of exogenous substances. In this review, a summary of recent studies that have focused on elucidating the growth dynamics of individual cells using QPI is presented. Specifically, investigations into cellular changes occurring during mitosis, the differentiation of cellular organelles, the assessment of distinct cell death processes (i.e., apoptosis, necrosis, and oncosis) and the precise measurement of live cell temperature are explored. Furthermore, the captivating applications of QPI in theragnostics, where its potential for transformative impact is prominently showcased, are highlighted. Finally, the challenges that need to be overcome for its wider adoption and successful integration into biomedical research are outlined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kasprowicz R, Suman R, O’Toole P (2017) Characterising live cell behaviour: traditional label-free and quantitative phase imaging approaches. Int J Biochem Cell Biol 84:89–95

    CAS  PubMed  Google Scholar 

  2. Kwon S, Lee Y, Jung Y, Kim JH, Baek B, Lim B, Lee J, Kim I, Lee J (2018) Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur J Med Chem 148:116–127

    CAS  PubMed  Google Scholar 

  3. Verduijn J, Van der Meeren L, Krysko DV, Skirtach AG (2021) Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis. Cell Death Discov 7:229

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Buzalewicz I, Ulatowska-jar A, Kaczorowska A, Wieliczko A, Marlena G (2021) Bacteria single-cell and photosensitizer interaction revealed by quantitative phase imaging. Int J Mol Sci 22(10):5068

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bon P, Cognet L (2022) On some current challenges in high-resolution optical bioimaging. ACS Photonics 9(8):2538–2546

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee KR, Kim K, Jung J, Heo JH, Cho S, Lee S, Chang G, Jo YJ, Park H, Park YK (2013) Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors (Switzerland) 13(4):4170–4191

    Google Scholar 

  7. Barer R (1952) Interference microscopy and mass determination. Nature 169:366

    CAS  PubMed  Google Scholar 

  8. Popescu G, Park YK, Lue N, Best-Popescu C, Deflores L, Dasari RR, Feld MS, Badizadegan K (2008) Optical imaging of cell mass and growth dynamics. Am J Physiol - Cell Physiol 295(2):538–544

    Google Scholar 

  9. Pezhouman A, Nguyen NB, Sercel AJ, Nguyen TL, Daraei A, Sabri S, Chapski DJ, Zheng M, Patananan AN, Ernst J, Plath K, Vondriska TM, Teitell MA, Ardehali R (2021) Transcriptional, electrophysiological, and metabolic characterizations of hESC-derived first and second heart fields demonstrate a potential role of TBX5 in cardiomyocyte maturation. Front Cell Dev Biol 9:787684

    PubMed  PubMed Central  Google Scholar 

  10. Park YK, Depeursinge C, Popescu G (2018) Quantitative phase imaging in biomedicine. Nat Photonics 12(10):578–589

    CAS  Google Scholar 

  11. Shin J, Kim G, Park J, Lee M, Park YK (2023) Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization. Sci Rep 13:1

    Google Scholar 

  12. Goswami N, He YR, Deng YH, Oh C, Sobh N, Valera E, Bashir R, Ismail N, Kong H, Nguyen TH, Best-Popescu C, Popescu G (2021) Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light Sci Appl 10:176

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rappaz B, Cano E, Colomb T, Kühn J, Depeursinge C, Simanis V, Magistretti PJ, Marquet P (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14(3):034049

    PubMed  Google Scholar 

  14. Pradeep S, Zangle TA (2022) Quantitative phase velocimetry measures bulk intracellular transport of cell mass during the cell cycle. Sci Rep 12:6074

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Aknoun S, Yonnet M, Djabari Z, Graslin F, Taylor M, Pourcher T, Wattellier B, Pognonec P (2021) Quantitative phase microscopy for non-invasive live cell population monitoring. Sci Rep 11:4409

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zlotek-Zlotkiewicz E, Monnier S, Cappello G, Le Berre M, Piel M (2015) Optical volume and mass measurements show that mammalian cells swell during mitosis. J Cell Biol 211(4):765–774

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sung Y, Choi W, Lue N, Dasari RR, Yaqoob Z (2012) Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS One 7(11):e49502

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Fanous MJ, Kilian KA, Popescu G (2019) Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci Rep 9:248

    PubMed  PubMed Central  Google Scholar 

  19. Tolde O, Gandalovičová A, Křížová A, Veselý P, Chmelík R, Rosel D, Brábek J (2018) Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci Rep 8:12020

    PubMed  PubMed Central  Google Scholar 

  20. Pradeep S, Tasnim T, Zhang H, Zangle TA (2021) Simultaneous measurement of neurite and neural body mass accumulation: via quantitative phase imaging. Analyst 146(4):1361–1368

    CAS  PubMed  Google Scholar 

  21. Hu C, Sam R, Shan M, Nastasa V, Wang M, Gillette M, Sengupta P, Popescu G, Biology C, Engineering C, Physics R, Engineering N (2019) Optical excitation and detection of neuronal activity. J Biophotonics 12(3):e201800269

    PubMed  Google Scholar 

  22. Kim G, Ahn D, Kang M, Park J, Ryu DH, Jo YJ, Song J, Ryu JS, Choi G, Chung HJ, Kim K, Chung DR, Yoo IY, Huh HJ, Seok Min H, Lee NY, Park YK (2022) Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. Light Sci Appl 11:190

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Girshovitz P, Shaked NT (2012) Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed Opt Express 3(8):1757–1773

    PubMed  PubMed Central  Google Scholar 

  24. Jo YJ, Park S, Jung JH, Yoon J, Joo H, Kim MH, Kang SJ, Choi MC, Lee SY, Park YK (2017) Holographic deep learning for rapid optical screening of anthrax spores. Sci Adv 3(8):e1700606

    PubMed  PubMed Central  Google Scholar 

  25. Kandel ME, He YR, Lee YJ, Chen THY, Sullivan KM, Aydin O, Saif MTA, Kong H, Sobh N, Popescu G (2020) Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat Commun 11:6256

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Llinares J, Cantereau A, Froux L, Becq F (2020) Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells. PLoS One 15(5):e0233439

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C, Marquet P, Magistretti PJ (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31(33):11846–11854

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jourdain P, Boss D, Rappaz B, Moratal C, Hernandez MC, Depeursinge C, Magistretti PJ, Marquet P (2012) Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABAA receptor. PLoS One 7(12):e51041

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Marquet P, Depeursinge C, Magistretti PJ (2014) Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1(2):020901

    PubMed  PubMed Central  Google Scholar 

  30. Chen X, Kandel ME, Hu C, Lee YJ, Popescu G (2020) Wolf phase tomography (WPT) of transparent structures using partially coherent illumination. Light Sci Appl 9:142

    PubMed  PubMed Central  Google Scholar 

  31. Aknoun S, Aurrand-Lions M, Wattellier B, Monneret S (2018) Quantitative retardance imaging by means of quadri-wave lateral shearing interferometry for label-free fiber imaging in tissues. Opt Commun 422:17–27

    CAS  Google Scholar 

  32. Boccara AC, Fournier D, Badoz J (1980) Thermo-optical spectroscopy: detection by the “mirage effect.” Appl Phys Lett 36(2):130–132

    CAS  Google Scholar 

  33. Quintanilla M, Liz-Marzán LM (2018) Guiding rules for selecting a nanothermometer. Nano Today 19:126–145

    CAS  Google Scholar 

  34. Baffou G, Polleux J, Rigneault H, Monneret S (2014) Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J Phys Chem C 118(9):4890–4898

    CAS  Google Scholar 

  35. Kiyonaka S, Sakaguchi R, Hamachi I, Morii T, Yoshizaki T, Mori Y (2015) Validating subcellular thermal changes revealed by fluorescent thermosensors. Nat Methods 12(9):801–802

    CAS  PubMed  Google Scholar 

  36. Molinaro C, Bénéfice M, Gorlas A, Da Cunha V, Robert HML, Catchpole R, Gallais L, Forterre P, Baffou G (2022) Life at high temperature observed in vitro upon laser heating of gold nanoparticles. Nat Commun 13:5342

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciraulo B, Garcia-Guirado J, de Miguel I, Ortega Arroyo J, Quidant R (2021) Long-range optofluidic control with plasmon heating. Nat Commun 12:2001

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bon P, Bourg N, Lécart S, Monneret S, Fort E, Wenger J, Lévêque-Fort S (2015) Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat Commun 6:7764

    CAS  PubMed  Google Scholar 

  39. Ohene Y, Marinov I, De Laulanié L, Dupuy C, Wattelier B, Starikovskaia S (2015) Phase imaging microscopy for the diagnostics of plasma-cell interaction. Appl Phys Lett 106(23):233703

    Google Scholar 

  40. Balvan J, Krizova A, Gumulec J, Raudenska M, Kizek R, Chmelik R, Masarik M (2015) Multimodal holographic microscopy : distinction between apoptosis and oncosis. PLoS One 10(5):e0127929

    Google Scholar 

  41. Barker KL, Boucher KM, Judson-torres RL (2020) Label-free classification of apoptosis, ferroptosis and necroptosis using digital holographic cytometry. Appl Sci 10:4439

    CAS  Google Scholar 

  42. Moratal C, Jourdain P, Depeursinge C, Pierre J, Pavillon N, Ku J (2012) Early cell death detection with digital holographic microscopy. PLoS One 7(1):e30912

    PubMed  PubMed Central  Google Scholar 

  43. Hu C, He S, Lee YJ, He Y, Kong EM, Li H, Anastasio MA, Popescu G (2022) Live-dead assay on unlabeled cells using phase imaging with computational specificity. Nat Commun 13(1):713

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Murray GF, Guest D, Mikheykin A, Toor A, Reed J (2021) Single cell biomass tracking allows identification and isolation of rare targeted therapy-resistant DLBCL cells within a mixed population. Analyst 146(4):1157–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M, Fontana A, D’Ippolito G, Sardo A, Iolascon A, Gambale A, Ferraro P (2017) Tomographic flow cytometry by digital holography. Light Sci Appl 6:e16241

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, Rohban M, Hung J, Hennig H, Concannon J, Smith I, Clemons PA, Singh S, Rees P, Horvath P, Linington RG, Carpenter AE (2017) Data-analysis strategies for image-based cell profiling. Nat Methods 14:849–863

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lei C, Nitta N, Ozeki Y, Goda K (2018) Optofluidic time-stretch microscopy: recent advances. Opt Rev 25:464–472

    CAS  Google Scholar 

  48. Shin S, Kim D, Kim K, Park Y (2018) Super-resolution three-dimensional fluorescence fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci Rep 8:9183

    PubMed  PubMed Central  Google Scholar 

  49. Tian L, Petruccelli JC, Miao Q, Kudrolli H, Nagarkar V, Barbastathis G (2013) Compressive x-ray phase tomography based on the transport of intensity equation. Opt Lett 38(17):3418–3421

    PubMed  Google Scholar 

  50. Li Y, Xue Y, Tian L (2018) Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5(10):1181–1190

    Google Scholar 

  51. Hu C, Popescu G (2019) Quantitative phase imaging (QPI) in neuroscience. IEEE J Sel Top Quantum Electron 25(1):6801309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.F., M.N.K, S.S.B., M.F., M.S.K., S.M., and I.A. Data curation: I.F., M.S.K., S.M., and I.A. Formal analysis: I.F., S.A., S.S.B., and I.A. Investigation: M.F., I.F., M.S.K., S.M., and I.A. Methodology: M.A., S.S.B., M.F., and I.A. Project administration: I.A. Resources: I.A. Supervision: I.A. Validation: S.S.B., M.F., M.N.K., M.S.K., and S.M. Visualization: S.S.B., M.F., S.M., and I.A. Writing—original draft: M.A., I.R., M.N.K., S.S.B., M.F., M.S.K., S.M., and I.A. Writing—review and editing: I.F., M.N.K, M.A., S.S.B., M.F., M.S.K., S.M., and I.A.

Corresponding author

Correspondence to Iftikhar Ahmad.

Ethics declarations

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, S.S., Fida, I., Fatima, M. et al. Quantitative phase imaging for characterization of single cell growth dynamics. Lasers Med Sci 38, 241 (2023). https://doi.org/10.1007/s10103-023-03902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03902-2

Keywords

Navigation