Skip to main content

Advertisement

Log in

Er:YAG laser in selective caries removal and dentin treatment with chitosan: a randomized clinical trial in primary molars

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the effect of chitosan on dentin treatment after selective removal of caries lesions with Er:YAG laser in reducing Streptococcus mutans, as well as its effect on the performed restorations. The sample consisted of children (aged 7 to 9 years) with active carious lesions and dentin cavitation located on the occlusal surface of deciduous molars. Eighty teeth were randomly distributed into 4 groups according to the caries removal method: Er:YAG laser (250 mJ/4 Hz) or bur and dentin surface treatment: 2.5% chitosan solution or distilled water. The bacterial load of caries-affected dentin was quantified by counting CFU/mg (n = 10). The teeth were restored and evaluated at 7 days, 6 months, and 12 months using modified USPHS criteria (n = 20). Microbiological data was analyzed by Mann–Whitney and clinical analyses were done using Kruskal–Wallis and Dunn test (α = 0.05). The results showed that the Er:YAG laser significantly reduced the amount of Streptococcus mutans (p = 0.0068). After dentin treatment with chitosan, there was a significant reduction in the amount of Streptococcus mutans for both removal methods (p = 0.0424). For the retention and secondary caries criteria, no significant differences were observed along the evaluated time (p > 0.05). The laser-treated group was rated “bravo” for discoloration (p = 0.0089) and marginal adaptation (p = 0.0003) after 6 and 12 months compared to baseline. The Er:YAG laser reduced the amount of Streptococcus mutans and the chitosan showed an additional antibacterial effect. After 1 year, the Er:YAG laser-prepared teeth, regardless of the dentin treatment, showed greater discoloration and marginal adaptation of the restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sarmadi R, Andersson EV, Lingström P, Gabre P (2018) A randomized controlled trial comparing Er:YAG laser and rotary bur in the excavation of caries — patients’ experiences and the quality of composite restoration. Open Dent J 12:443–454. https://doi.org/10.2174/1874210601812010443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li T, Zhang X, Shi H, Ma Z, Lv B, Xie M (2018) Er:YAG laser application in caries removal and cavity preparation in children: a meta-analysis. Lasers Med Sci 12:72–77. https://doi.org/10.1007/s10103-018-2582-x

    Article  Google Scholar 

  3. Baraba A, Kqiku L, Gabrić D, Verzak Ž, Hanscho K, Miletić I (2018) Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers. Braz J Med Biol Res 51(3):68–72. https://doi.org/10.1590/1414-431x20176872

    Article  CAS  Google Scholar 

  4. Curylofo-Zotti FA, Oliveira VC, Marchesin AR, Borges HS, Tedesco AC, Corona SAM (2023) In vitro antibacterial activity of green tea-loaded chitosan nanoparticles on caries-related microorganisms and dentin after Er:YAG laser caries removal. Lasers Med Sci 38(1):50. https://doi.org/10.1007/s10103-023-03707-3

    Article  PubMed  Google Scholar 

  5. Valenti C, Pagano S, Bozza S, Ciurnella E, Lomurno G, Capobianco B, Coniglio M, Cianetti S, Marinucci L (2021) Use of the Er:YAG laser in conservative dentistry: evaluation of the microbial population in carious lesions. Materials (Basel) 14(9):2387. https://doi.org/10.3390/ma14092387

    Article  CAS  PubMed  Google Scholar 

  6. Wang JH, Yang K, Zhang BZ, Zhou ZF, Wang ZR, Ge X, Wang LL, Chen YJ, Wang XJ (2020) Effects of Er:YAG laser pre-treatment on dentin structure and bonding strength of primary teeth: an in vitro study. BMC Oral Health 20(1):316. https://doi.org/10.1186/s12903-020-01315-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He Z, Chen L, Hu X, Shimada Y, Otsuki M, Tagami J, Ruan S (2017) Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation. J Mech Behav Biomed Mater 74:274–282. https://doi.org/10.1016/j.jmbbm.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  8. Vieira AA, Silva ACN (2021) Effects of erbium laser radiation on the dentin organic matrix. Lasers in Dental Science 5:69–78. https://doi.org/10.1007/s41547-021-00122-1

    Article  Google Scholar 

  9. Kishen A, Shrestha S, Shrestha A, Cheng C, Goh C (2016) Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent Mater 32(8):968–977. https://doi.org/10.1016/j.dental.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  10. Curylofo-Zotti FA, Scheffel DLS, Macedo AP, Souza-Gabriel AE, Hebling J, Corona SAM (2019) Effect of Er:YAG laser irradiation and chitosan biomodification on the stability of resin/demineralized bovine dentin bond. J Mech Behav Biomed Mater 91:220–228. https://doi.org/10.1016/j.jmbbm.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  11. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120(Pt A):1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139

    Article  CAS  PubMed  Google Scholar 

  12. Baena E, Cunha SR, Maravić T, Comba A, Paganelli F, Alessandri-Bonetti G, Ceballos L, Tay FR, Breschi L, Mazzoni A (2020) Effect of chitosan as a cross-linker on matrix metalloproteinase activity and bond stability with different adhesive systems. Mar Drugs 18(5):263. https://doi.org/10.3390/md18050263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawakita ERH, Ré ACS, Peixoto MPG, Ferreira MP, Ricomini-Filho AP, Freitas O, Aires CP (2019) Effect of chitosan dispersion and microparticles on older Streptococcus mutans biofilms. Molecules 24(9):1808. https://doi.org/10.3390/molecules24091808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valério RA, Galo R, Galafassi D, Corona SAM, Borsatto MC (2020) Four-year clinical prospective follow-up of resin composite restoration after selective caries removal using Er:YAG laser. Clin Oral Investig 24(7):2271–2283. https://doi.org/10.1007/s00784-019-03082-w

    Article  PubMed  Google Scholar 

  15. Ziotti IR, Paschoini VL, Corona SAM, Souza-Gabriel AE (2022) Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface. Restor Dent Endod 47(3):e28. https://doi.org/10.5395/rde.2022.47.e28

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thanaratikul B, Santiwong B, Harnirattisa C (2016) Self-etch or etch-and-rinse mode did not affect the microshear bond strength of a universal adhesive to primary dentin. Dent Mater J 35(2):174–179. https://doi.org/10.4012/dmj.2015-109

    Article  CAS  PubMed  Google Scholar 

  17. Dommisch H, Peus K, Kneist S, Krause F, Braun A, Hedderich J, Jepsen S, Eberhard J (2008) Fluorescence-controlled Er:YAG laser for caries removal in permanent teeth: a randomized clinical trial. Eur J Oral Sci 116(2):170–176. https://doi.org/10.1111/j.1600-0722.2008.00521.x

    Article  PubMed  Google Scholar 

  18. Bitello-Firmino L, Soares VK, Damé-Teixeira N, Parolo CCF, Maltz M (2018) Microbial load after selective and complete caries removal in permanent molars: a randomized clinical trial. Braz Dent J 29(3):290–295. https://doi.org/10.1590/0103-6440201801816

    Article  PubMed  Google Scholar 

  19. Costa EM, Silva S, Tavaria FK, Pintado MM (2013) Study of the effects of chitosan upon Streptococcus mutans adherence and biofilm formation. Anaerobe 27–31. https://doi.org/10.1016/j.anaerobe.2013.02.002.

  20. Rajabnia R, Ghasempour M, Gharekhani S, Gholamhoseinnia S, Soroorhomayoon S (2016) Anti-Streptococcus mutans property of a chitosan: containing resin sealant. J Int Soc Prev Community Dent 6(1):49–53. https://doi.org/10.4103/2231-0762.175405

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tachaboonyakiat W (2017) Antimicrobial applications of chitosan. Chitosan Based Biomaterials 2:245–274. https://doi.org/10.1016/B978-0-08-100228-5.00009-2

    Article  CAS  Google Scholar 

  22. Trevelin LT, da Silva BTF, de Freitas PM, Matos AB (2019) Influence of Er:YAG laser pulse duration on the long-term stability of organic matrix and resin-dentin interface. Lasers Med Sci 34(7):1391–1399. https://doi.org/10.1007/s10103-019-02739-y

    Article  PubMed  Google Scholar 

  23. Paschoini VL, Ziotti IR, Neri CR, Corona SAM, Souza-Gabriel AE (2021) Chitosan improves the durability of resin-dentin interface with etch-and-rinse or self-etch adhesive systems. J Appl Oral Sci 29:e20210356. https://doi.org/10.1590/1678-7757-2021-0356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elsahn NA, El-Damanhoury HM, Elkassas DW (2021) Influence of low-level laser modification and adhesive application mode on the bonding efficiency of universal adhesives to Er:YAG laser-ablated dentin. J Lasers Med Sci 12:e7. https://doi.org/10.34172/jlms.2021.07

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun G, Chen X, Wei F, Bai T, Zhu S (2023) Effects of Er: YAG, Er, Cr: YSGG, and Nd: YAG laser irradiation and adhesive systems on the immediate and long-term bond strength of dentin: a systematic review and meta-analysis. Lasers Med Sci 38(1):32. https://doi.org/10.1007/s10103-022-03699-6

    Article  PubMed  Google Scholar 

  26. do Amaral FL, de Colucci V, Souza-Gabriel AE, Chinelatti MA, Palma-Dibb RG, Corona SA (2008) Adhesion to Er:YAG laser-prepared dentin after long-term water storage and thermocycling. Oper Dent 33(1):51–8. https://doi.org/10.2341/07-30

    Article  PubMed  Google Scholar 

  27. Cardoso MV, Coutinho E, Ermis RB, Poitevin A, Van Landuyt K, De Munck J, Carvalho RC, Van Meerbeek B (2008) Influence of dentin cavity surface finishing on micro-tensile bond strength of adhesives. Dent Mater 24(4):492–501. https://doi.org/10.1016/j.dental.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida Y, Yoshihara K, Nagaoka N, Hayakawa S, Torii Y, Ogawa T, Osaka A, Meerbeek BV (2012) Self-assembled nano-layering at the adhesive interface. J Dent Res 91(4):376–381. https://doi.org/10.1177/0022034512437375

    Article  CAS  PubMed  Google Scholar 

  29. Cersosimo MC, Matos AB, Couto RS, Marques MM, de Freitas PM (2016) Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin. J Biomed Opt 21(4):48001. https://doi.org/10.1117/1.JBO.21.4.048001

    Article  PubMed  Google Scholar 

  30. Gu LS, Cai X, Guo JM, Pashley DH, Breschi L, Xu HHK, Wang XY, Tay FR, Niu LN (2019) Chitosan based extrafibrillar demineralization for dentin bonding. J Dent Res 98(2):186–193. https://doi.org/10.1177/0022034518805419

    Article  CAS  PubMed  Google Scholar 

  31. Kim KL, Namgung C, Cho BH (2013) The effect of clinical performance on the survival estimates of direct restorations. Restor Dent Endod 38(1):11–20. https://doi.org/10.5395/rde.2013.38.1.11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP) for the scholarship (grant number #2016/14864-5) and for financial support (grant number #2017/00720-4) awarded.

Author information

Authors and Affiliations

Authors

Contributions

RMCS: investigation; writing — original draft.

RSS: investigation; writing — original draft.

SLdeSS: resources; writing — original draft.

AES-G: formal analysis; writing — original draft.

SAMC: writing — original draft; methodology; supervision.

Corresponding author

Correspondence to Silmara Aparecida Milori Corona.

Ethics declarations

Ethical approval

This study was approved by the Research Ethics Committee of Ribeirão Preto School of Dentistry/São Paulo University (CAAE 68339116.4.0000.5419). It was registered in the Brazilian Registry of Clinical Trials (Nº UTN: U1111-1213–4644). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.M.C., Scatolin, R.S., de Souza Salvador, S.L. et al. Er:YAG laser in selective caries removal and dentin treatment with chitosan: a randomized clinical trial in primary molars. Lasers Med Sci 38, 208 (2023). https://doi.org/10.1007/s10103-023-03869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03869-0

Keywords

Navigation