Skip to main content

Advertisement

Log in

Comparative study of soft tissue surgery by visible and infrared laser radiation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To compare the cutting properties of lasers with different wavelengths (445 nm, 532 nm and 808 nm) used in cutting blood-rich tissues. Porcine myocardial tissue was cut using 2.3–15 W laser radiation in contact and non-contact modes with an optical fiber or focusing handpiece. The cut depth and coagulation zone width were determined histologically. The 445-nm laser achieved the greatest cut depth for all cutting parameters (p < 0.01). The blue laser gave the smallest coagulation width to cut depth ratio. Results of the study are consistent with the assumption that a 445 nm blue laser may have better cutting properties than green and infrared lasers due to the high absorption of radiation at this wavelength in hemoglobin and, consequently, in the biological blood-rich tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to proprietary rules.

References

  1. Fornaini C, Fekrazad R, Rocca JP, Zhang S, Merigo E (2021) Use of blue and blue-violet lasers in dentistry: a narrative review. J Lasers Med Sci 12:e31. https://doi.org/10.34172/jlms.2021.31

  2. Miller BJ, Abdelhamid A, Karagama Y (2021) Applications of office-based 445 nm blue laser transnasal flexible laser surgery: a case series and review of practice. Ear Nose Throat J 100(1_suppl):105S-112S. https://doi.org/10.1177/0145561320960544

  3. Pidro A, Biscevic A, Pjano MA, Mravicic I, Bejdic N, Bohac M (2019) Excimer lasers in refractive surgery. Acta Inform Med 27(4):278–283. https://doi.org/10.5455/aim.2019.27.278-283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tadir Y, Gaspar A, Lev-Sagie A et al (2017) Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med 49(2):137–159. https://doi.org/10.1002/lsm.22637

    Article  PubMed  PubMed Central  Google Scholar 

  5. Enikeev D, Shariat SF, Taratkin M, Glybochko P (2020) The changing role of lasers in urologic surgery. Curr Opin Urol 30(1):24–29. https://doi.org/10.1097/MOU.0000000000000695

    Article  PubMed  Google Scholar 

  6. Khalkhal E, Rezaei-Tavirani M, Zali MR, Akbari Z (2019) The evaluation of laser application in surgery: a review article. J Lasers Med Sci 10(Suppl 1):S104–S111. https://doi.org/10.15171/jlms.2019.S18

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644. https://doi.org/10.1021/cr010379n

    Article  CAS  PubMed  Google Scholar 

  8. Fritz MA, Amin MR (2015) In-office laryngeal laser treatment. Curr Otorhinolaryngol Rep 3(3):125–131. https://doi.org/10.1007/s40136-015-0091-z

    Article  Google Scholar 

  9. Chung DE, Te AE (2010) High-power 532 nm laser prostatectomy: an update. Curr Opin Urol 20(1):13–19. https://doi.org/10.1097/MOU.0b013e3283336f58

    Article  PubMed  Google Scholar 

  10. Xie X, Young J, Kost K, McGregor M (2013) KTP 532 nm laser for laryngeal lesions. a systematic review. J Voice 27(2):245–249. https://doi.org/10.1016/j.jvoice.2012.11.006

  11. Tibbetts KM, Simpson CB (2019) Office-based 532-nanometer pulsed potassium-titanyl-phosphate laser procedures in laryngology. Otolaryngol Clin North Am 52(3):537–557. https://doi.org/10.1016/j.otc.2019.02.011

    Article  PubMed  Google Scholar 

  12. Kalakonda B, Farista S, Koppolu P et al (2016) Evaluation of patient perceptions after vestibuloplasty procedure: a comparison of diode laser and scalpel techniques. J Clin Diagn Res 10(5):ZC96-ZC100. https://doi.org/10.7860/JCDR/2016/17623.7820

  13. Ortega-Concepción D, Cano-Durán JA, Peña-Cardelles JF, Paredes-Rodríguez VM, González-Serrano J, López-Quiles J (2017) The application of diode laser in the treatment of oral soft tissues lesions. A literature review. J Clin Exp Dent 9(7):e925-e928. https://doi.org/10.4317/jced.53795

  14. Arroyo HH, Neri L, Fussuma CY, Imamura R (2016) Diode laser for laryngeal surgery: a systematic review. Int Arch Otorhinolaryngol 20(2):172–179. https://doi.org/10.1055/s-0036-1579741

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bertlich M, Kashani F, Weiss BG et al (2021) Safety and efficacy of blue light laser treatment in hereditary hemorrhagic telangiectasia. Lasers Surg Med 53(3):309–315. https://doi.org/10.1002/lsm.23289

    Article  PubMed  Google Scholar 

  16. Hess MM, Fleischer S, Ernstberger M (2018) New 445 nm blue laser for laryngeal surgery combines photoangiolytic and cutting properties. Eur Arch Otorhinolaryngol 275(6):1557–1567. https://doi.org/10.1007/s00405-018-4974-8

    Article  PubMed  Google Scholar 

  17. Braun A, Kettner M, Berthold M, Wenzler JS, Heymann PGB, Frankenberger R (2018) Efficiency of soft tissue incision with a novel 445-nm semiconductor laser. Lasers Med Sci 33(1):27–33. https://doi.org/10.1007/s10103-017-2320-9

    Article  PubMed  Google Scholar 

  18. Jiang DL, Yang Z, Liu GX et al (2019) A novel 450-nm blue laser system for surgical applications: efficacy of specific laser-tissue interactions in bladder soft tissue. Lasers Med Sci 34(4):807–813. https://doi.org/10.1007/s10103-018-2668-5

    Article  PubMed  Google Scholar 

  19. Kato J, Hatayama H, Miyazaki H et al (2008) Surgical performance of a 405-nm diode laser in treatment of soft tissue. Laser Phys Lett 5(4):316–320. https://doi.org/10.1002/lapl.200710123

    Article  CAS  Google Scholar 

  20. Linden KJ (2016) Low-cost 420nm blue laser diode for tissue cutting and hemostasis. Optical Interactions with Tissue and Cells XXVII 9706:29–35. https://doi.org/10.1117/12.2208315

    Article  Google Scholar 

  21. Gutiérrez-Corrales A, Rizcala-Orlando Y, Montero-Miralles P et al (2020) Comparison of diode laser - oral tissue interaction to different wavelengths. In vitro study of porcine periodontal pockets and oral mucosa. Med Oral Patol Oral Cir Bucal 25(2):e224-e232. https://doi.org/10.4317/medoral.23317

  22. Taratkin M, Netsch C, Enikeev D et al (2021) The impact of the laser fiber-tissue distance on histological parameters in a porcine kidney model. World J Urol 39(5):1607–1612. https://doi.org/10.1007/s00345-020-03326-5

    Article  CAS  PubMed  Google Scholar 

  23. Hanke A, Fimmers R, Frentzen M, Meister J (2021) Quantitative determination of cut efficiency during soft tissue surgery using diode lasers in the wavelength range between 400 and 1500 nm. Lasers Med Sci 36(8):1633–1647. https://doi.org/10.1007/s10103-020-03243-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jacobson AS, Woo P, Shapshay SM (2006) Emerging technology: flexible CO2 laser WaveGuide. Otolaryngol Head Neck Surg 135(3):469–470. https://doi.org/10.1016/j.otohns.2006.03.027

    Article  PubMed  Google Scholar 

  25. Verdaasdonk RM, van Swol CF (1997) Laser light delivery systems for medical applications. Phys Med Biol 42(5):869–894. https://doi.org/10.1088/0031-9155/42/5/010

    Article  CAS  PubMed  Google Scholar 

  26. Burns JA, Kobler JB, Heaton JT, Lopez-Guerra G, Anderson RR, Zeitels SM (2007) Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study. Ann Otol Rhinol Laryngol 116(11):853–857. https://doi.org/10.1177/000348940711601111

    Article  PubMed  Google Scholar 

  27. Neumann RA, Knobler RM, Pieczkowski F, Gebhart W (1991) Enzyme histochemical analysis of cell viability after argon laser-induced coagulation necrosis of the skin. J Am Acad Dermatol 25(6 Pt 1):991–998. https://doi.org/10.1016/0190-9622(91)70296-e

    Article  CAS  PubMed  Google Scholar 

  28. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527. https://doi.org/10.1126/science.6836297

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors Andrey D. Khlopkov, Ksenia V. Shatilova and Ilia D. Samoilov receive a regular salary from “MeLSyTech”, Ltd. as employees. No additional grants, funds or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization and final revision were carried out by Ksenia V. Shatilova. Material preparation, data collection and analysis were performed by Andrey D. Khlopkov and Ilia D. Samoilov. The first draft of the manuscript was written by Andrey D. Khlopkov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrey D. Khlopkov.

Ethics declarations

Informed consent

Not applicable.

Competing interests

The authors have no relevant non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlopkov, A.D., Samoilov, I.D. & Shatilova, K.V. Comparative study of soft tissue surgery by visible and infrared laser radiation. Lasers Med Sci 38, 167 (2023). https://doi.org/10.1007/s10103-023-03831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03831-0

Keywords

Navigation