Skip to main content

Advertisement

Log in

Lower eyelid blepharoplasty combined with ultrasound-guided percutaneous diode laser lipolysis: evaluating effectiveness with long-term outcome

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Laser lipolysis may be considered for selective removal of excess orbital fat via minimally invasive lower blepharoplasty. To control the energy delivery to a precise anatomic location while avoiding complications, ultrasound guidance can be utilized. Under local anesthesia, a diode laser probe (Belody, Minslab, Korea) was introduced percutaneously to the lower eyelid. The tip of the laser device and changes in orbital fat volume were carefully controlled with ultrasound imaging. A 1470-nm wavelength was used for orbital fat reduction (maximal energy 300 J), and a 1064-nm wavelength was used to tighten the lower eyelid skin (maximal energy 200 J). From March 2015 to December 2019, a total of 261 patients underwent ultrasound-guided diode laser lower blepharoplasty. The procedure took 17 min on average. Total energy of 49 J–510 J (average = 228.31 J) was delivered in 1470-nm wavelengths or 45–297 J (average = 127.68 J) was delivered in 1064-nm wavelengths. Most patients were very satisfied with their results. Fourteen patients experienced complications, including nine cases of transient hypesthesia (3.45%), and three skin thermal burns (1.15%). However, these complications were not observed after strict control of the energy delivery below 500 J for each lower lid. Improvement in lower eyelid bags can be achieved using a minimally invasive approach in selected patients with ultrasound-guided laser lipolysis. It is a fast and safe procedure that can be performed in the outpatient setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Hashem AM, Couto RA, Waltzman JT, Drake RL, Zins JE (2017) Evidence-based medicine: a graded approach to lower lid blepharoplasty. Plast Reconstr Surg 139:139e-e150

    CAS  PubMed  Google Scholar 

  2. Wong CH, Mendelson B (2017) Extended transconjunctival lower eyelid blepharoplasty with release of the tear trough ligament and fat redistribution. Plast Reconstr Surg 140:273–282

    CAS  PubMed  Google Scholar 

  3. Maffi TR, Chang S, Friedland JA (2011) Traditional lower blepharoplasty: is additional support necessary? A 30-year review. Plast Reconstr Surg 128:265–273

    CAS  PubMed  Google Scholar 

  4. Ma G, Lin XX, Hu XJ, Jin YB, Chen H (2012) Treatment of venous infraorbital dark circles using a long-pulsed 1,064-nm neodymium-doped yttrium aluminum garnet laser. Dermatol Surg 38:1277–1282

    CAS  PubMed  Google Scholar 

  5. Tawfik HA, Zuel-Fakkar N, Elmarasy R et al (2011) Phosphatidylcholine for the treatment of prominent lower eyelid fat pads: a pilot study. Ophthalmic Plast Reconstr Surg 27:147–151

    PubMed  Google Scholar 

  6. Wattanakrai P, Pootongkam S, Rojhirunsakool S (2012) Periorbital rejuvenation with fractional 1,550-nm ytterbium/erbium fiber laser and variable square pulse 2,940-nm erbium:YAG laser in Asians: a comparison study. Dermatol Surg 38:610–622

    CAS  PubMed  Google Scholar 

  7. Zhang Y, Zhang L, Sun X et al (2016) Evaluation of lower blepharoplasty treated with the SmartLipo 1064-nm system and its clinical implications: A retrospective review. J Cosmet Laser Ther 18:376–380

    PubMed  Google Scholar 

  8. Reynaud JP, Skibinski M, Wassmer B, Rochon P, Mordon S (2009) Lipolysis using a 980-nm diode laser: a retrospective analysis of 534 procedures. Aesthetic Plast Surg 33:28–36

    PubMed  Google Scholar 

  9. Wolfenson M, Hochman B, Ferreira LM (2015) Laser lipolysis: skin tightening in lipoplasty using a diode laser. Plast Reconstr Surg 135:1369–1377

    CAS  PubMed  Google Scholar 

  10. Havel M, Sroka R, Leunig A, Patel P, Betz CS (2011) A double-blind, randomized, intra-individual controlled feasibility trial comparing the use of 1,470 and 940 nm diode laser for the treatment of hyperplastic inferior nasal turbinates. Lasers Surg Med 43:881–886

    PubMed  Google Scholar 

  11. Youn JI, Holcomb JD (2013) Ablation efficiency and relative thermal confinement measurements using wavelengths 1,064, 1,320, and 1,444 nm for laser-assisted lipolysis. Lasers Med Sci 28:519–527

    PubMed  Google Scholar 

  12. Seckel BR, Doherty ST, Childs JJ et al (2009) The role of laser tunnels in laser-assisted lipolysis. Lasers Surg Med 41:728–737

    PubMed  Google Scholar 

  13. Mordon S, Eymard-Maurin AF, Wassmer B, Ringot J (2007) Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser. Aesthet Surg J 27:263–268

    CAS  PubMed  Google Scholar 

  14. Badin AZ, Gondek LB, Garcia MJ et al (2005) Analysis of laser lipolysis effects on human tissue samples obtained from liposuction. Aesthetic Plast Surg 29:281–286

    PubMed  Google Scholar 

  15. Yu D, Biesman B, Khan JA (2009) Bilateral eyelid dermal burn from subcutaneous diode laser lipolysis blepharoplasty. Lasers Surg Med 41:609–611

    PubMed  Google Scholar 

  16. Horta R, Nascimento R, Valenca-Filipe R et al (2015) The ultrasound-guided fat transplantation. Surg Innov 22:318–319

    PubMed  Google Scholar 

  17. Shah J, Thomsen S, Milner TE, Emelianov SY (2008) Ultrasound guidance and monitoring of laser-based fat removal. Lasers Surg Med 40:680–687

    PubMed  PubMed Central  Google Scholar 

  18. Nahmany G, Orenstein A (2009) Selective lipolysis by ultrasound with a novel technology: feasibility and dosimetry study in an in-vivo porcine model. Lasers Surg Med Suppl 21:1–154

    Google Scholar 

  19. Kim JY, Pak CS, Park JH, Jeong JH, Heo CY (2014) Effects of polydeoxyribonucleotide in the treatment of pressure ulcers. J Korean Med Sci 29(Suppl 3):S222–S227

    CAS  PubMed  PubMed Central  Google Scholar 

  20. S, L.P., et al (2016) Objective estimation of patient age through a new composite scale for facial aging assessment: the face - objective assessment scale. J Craniomaxillofac Surg 44(7):775–82

    Google Scholar 

  21. La Padula S et al (2019) In search of a universal and objective method to assess facial aging: the new face objective photo-numerical assessment scale. J Craniomaxillofac Surg 47(8):1209–1215

    PubMed  Google Scholar 

  22. Hersant B et al (2021) Synergistic effects of autologous platelet-rich plasma and hyaluronic acid injections on facial skin rejuvenation. Aesthetic Surg J 41(7):854–865

    Google Scholar 

  23. Schwarcz RM, Kotlus B (2015) Complications of lower blepharoplasty and midface lifting. Clin Plast Surg 42:63–71

    PubMed  Google Scholar 

  24. Guner H (2020) Percutaneous lower blepharoplasty: a novel technique in lower eyelid aesthetics. J Craniofac Surg 31:e140–e144

    PubMed  Google Scholar 

  25. Kiang L, Deptula P, Mazhar M, Murariu D, Parsa FD (2014) Muscle-sparing blepharoplasty: a prospective left-right comparative study. Arch Plast Surg 41:576–583

    PubMed  PubMed Central  Google Scholar 

  26. Huang YL, Chang SL, Ma L, Lee MC, Hu S (2014) Clinical analysis and classification of dark eye circle. Int J Dermatol 53:164–170

    PubMed  Google Scholar 

  27. Lee JH, Hong G (2018) Definitions of groove and hollowness of the infraorbital region and clinical treatment using soft-tissue filler. Arch Plast Surg 45:214–221

    PubMed  PubMed Central  Google Scholar 

  28. Rotunda AM (2009) Injectable treatments for adipose tissue: terminology, mechanism, and tissue interaction. Lasers Surg Med 41:714–720

    PubMed  Google Scholar 

  29. Lessner AM, Fagien S (1998) Laser blepharoplasty. Semin Ophthalmol 13:90–102

    CAS  PubMed  Google Scholar 

  30. Seckel BR, Kovanda CJ, Cetrulo CL Jr et al (2000) Laser blepharoplasty with transconjunctival orbicularis muscle/septum tightening and periocular skin resurfacing: a safe and advantageous technique. Plast Reconstr Surg 106:1127–41 (discussion 42-5)

    CAS  PubMed  Google Scholar 

  31. Sukal SA, Chapas AM, Bernstein LJ et al (2008) Eyelid tightening and improved eyelid aperture through nonablative fractional resurfacing. Dermatol Surg 34:1454–1458

    CAS  PubMed  Google Scholar 

  32. Tierney EP, Hanke CW, Watkins L (2011) Treatment of lower eyelid rhytids and laxity with ablative fractionated carbon-dioxide laser resurfacing: case series and review of the literature. J Am Acad Dermatol 64:730–740

    PubMed  Google Scholar 

  33. Chu EA, Li M, Lazarow FB, Wong BJ (2014) Mid-infrared laser orbital septal tightening: ex vivo dosimetry study and pilot clinical study. JAMA Facial Plast Surg 16:425–431

    PubMed  PubMed Central  Google Scholar 

  34. Sachs ME, Bosniak SL (1986) Nonsurgical fat removal in cosmetic blepharoplasty: a new technique. Ann Plast Surg 16:516–520

    CAS  PubMed  Google Scholar 

  35. Mordon S, Plot E (2009) Laser lipolysis versus traditional liposuction for fat removal. Expert Rev Med Devices 6:677–688

    PubMed  Google Scholar 

  36. Fakhouri TM, El Tal AK, Abrou AE, Mehregan DA, Barone F (2012) Laser-assisted lipolysis: a review. Dermatol Surg 38:155–169

    CAS  PubMed  Google Scholar 

  37. Wassmer B, Zemmouri J, Rochon P, Mordon S (2010) Comparative study of wavelengths for laser lipolysis. Photomed Laser Surg 28:185–188

    PubMed  Google Scholar 

  38. Li K, Nicoli F, Xi WJ et al (2019) The 1470 nm diode laser with an intralesional fiber device: a proposed solution for the treatment of inflamed and infected keloids. Burns Trauma 7:5

    PubMed  PubMed Central  Google Scholar 

  39. DiBernardo BE, Reyes J, Chen B (2009) Evaluation of tissue thermal effects from 1064/1320-nm laser-assisted lipolysis and its clinical implications. J Cosmet Laser Ther 11:62–69

    PubMed  Google Scholar 

  40. Sun Y, Wu SF, Yan S et al (2009) Laser lipolysis used to treat localized adiposis: a preliminary report on experience with Asian patients. Aesthetic Plast Surg 33:701–705

    PubMed  Google Scholar 

  41. van den Bosch WA, Leenders I, Mulder P (1999) Topographic anatomy of the eyelids, and the effects of sex and age. Br J Ophthalmol 83:347–352

    PubMed  PubMed Central  Google Scholar 

  42. Fezza JP, Massry G (2015) Lower eyelid length. Plast Reconstr Surg 136:152e-e159

    CAS  PubMed  Google Scholar 

  43. Oni G, Chow W, Ramakrishnan V, Griffiths M (2018) Plastic surgeon-led ultrasound. Plast Reconstr Surg 141:300e-e309

    CAS  PubMed  Google Scholar 

  44. Cohen LM, Yoon MK (2019) Update on current aspects of orbital imaging: CT, MRI, and ultrasonography. Int Ophthalmol Clin 59:69–79

    PubMed  Google Scholar 

  45. Rajabi MT, Papageorgiou K, Taban M et al (2017) Ultrasonographic motion analysis of lower eyelid compartments in patients with chronic thyroid associated ophthalmopathy. J Curr Ophthalmol 29:310–317

    PubMed  PubMed Central  Google Scholar 

  46. Christou E, Parsi K (2014) Non-involuting congenital haemangioma of the eyelid: successful treatment with fluroscopic ultrasound guided sclerotherapy and surgical excision. Phlebology 29:4–8

    CAS  PubMed  Google Scholar 

  47. Rabinowitz MR, Merton DA, Liu JB et al (2014) Contrast-enhanced ultrasound-guided Sentinel lymph node biopsy of the ocular conjunctiva. Laryngoscope 124:2531–2536

    PubMed  Google Scholar 

  48. Shrestha A, Shrestha S, Koirala P, Pun B (2017) Ultrasound evaluation of normal orbital preseptal thickness. Nepal J Ophthalmol 9:56–59

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received the financial support of the St. Vincent’s Hospital, research institute of medical science (SVHR-2020–03). No external funding supported this article.

Author information

Authors and Affiliations

Authors

Contributions

Dong Yeon Kim: conceptualization, methodology, formal analysis, writing—original draft, visualization. Hye Ju Han: investigation, data curation, writing—reviewing and editing, visualization. Bo Seong Sohn: resources, validation. Hyung-Sup Shim: supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Hyung-Sup Shim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 81202 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.Y., Han, H.J., Sohn, B.S. et al. Lower eyelid blepharoplasty combined with ultrasound-guided percutaneous diode laser lipolysis: evaluating effectiveness with long-term outcome. Lasers Med Sci 38, 78 (2023). https://doi.org/10.1007/s10103-023-03739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03739-9

Keywords

Navigation