Skip to main content
Log in

Analysis of pain relief and functional recovery in patients with rotator cuff tendinopathy through therapeutic ultrasound and photobiomodulation therapy: a comparative study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to compare shoulder tendinopathy treatment with therapeutic ultrasound combined with LED photobiomodulation therapy using LED-infrared (850 nm) or LED-red (640 nm). The study assessed 75 patients, aged 45 to 70 years, distributed into five experimental groups (15 patients each): therapeutic ultrasound (US), infrared light irradiation (IR), visible red light irradiation (VR), infrared light and ultrasound combined (IR-US), and red light in conjunction with ultrasound (VR-US). The ultrasound parameters are 1 MHz, 0.5 W/cm2 (SATA), and 100 Hz repetition rate, applied for 4 min each session. LED irradiation protocols were as follows: 3 points, 7.5 J per point, IR-LED 750 mW, 10 s, VR-LED 250 mW, 30 s. LED irradiation is followed by ultrasound in the combined therapies. The efficiency of the five therapies was evaluated assessing 12 parameters: quality of life (Health Assessment Questionnaire, HAQ), pain intensity (Visual Analog Scale, VAS), articular amplitude of shoulder movement (flexion, extension, abduction, adduction, medial rotation, lateral rotation), muscle strength (abduction, lateral rotation), and electromyography (lateral rotation, abduction). Treatments comprised 12 sessions for 4 weeks. Intra-group analysis showed that the five therapies significantly improved the recovery of all parameters after treatment. Regarding the comparison of irradiated therapies and ultrasound, statistical analysis showed that IR-US was a better treatment than US for all 12 parameters. IR treatment exceeded US on 9 items, whereas that VR and VR-US therapies exceeded US in 7 and 10 parameters, respectively (p < 0.05). Because of that, IR-US shows to be the best treatment for rotator cuff tendinopathy. In conclusion, improvements in quality of life, pain intensity relief, shoulder amplitude motion, and muscle strength force obtained with ultrasound therapy are enhanced by adding infrared LED irradiation to ultrasound for patients suffering from rotator cuff tendinopathy. This study was registered with the Brazilian Registry of Clinical Trials (ReBEC) under Universal Trial Number (UTN) U1111-1219–3594 (2018/22/08).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Nho SJ, Yadav H, Shindle MK, MacGillivray JD (2008) Rotator cuff degeneration: etiology and pathogenesis. Am J Sports Med 36:987–993. https://doi.org/10.1177/0363546508317344

    Article  PubMed  Google Scholar 

  2. Lewis JS (2009) Rotator cuff tendinopathy. Br J Sports Med 43:236–241. https://doi.org/10.1136/bjsm.2008.052175

    Article  CAS  PubMed  Google Scholar 

  3. Seitz AL, McClure PW, Finucane S, Boardman ND, Michener LA (2011) Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? Clin Biomech 26:1–12. https://doi.org/10.1016/j.clinbiomech.2010.08

    Article  Google Scholar 

  4. Pieters L, Lewis J, Kuppens K, Jochems J, Bruijstens T, Joossens L, Struyf F (2020) An update of systematic reviews examining the effectiveness of conservative physical therapy interventions for subacromial shoulder pain. J Orthop Sports Phys Ther 50:131–141. https://doi.org/10.2519/jospt.2020.8498

    Article  PubMed  Google Scholar 

  5. Hinsley H, Nicholls A, Dainess M, Wallace G, Arden N, Carr A (2014) Classification of rotator cuff tendinopathy using high definition ultrasound. Muscles, Ligaments Tendons J 4:391–397

    Article  Google Scholar 

  6. Pribicevic M, Pollard H (2005) A multi-modal treatment approach for the shoulder: a 4 patient case series. Chiropr Osteopat 13:1–9. https://doi.org/10.1186/1746-1340-13-20

    Article  Google Scholar 

  7. Nam HS, Lee SU (2014) Conservative management of shoulder pain with common causes. J Korean Med Assoc 57:661–666. https://doi.org/10.5124/jkma.2014.57.8.661

    Article  Google Scholar 

  8. Abate M, Salini V, Schiavone C, Andia I (2017) Clinical benefits and drawbacks of local corticosteroids injections in tendinopathies. Expert Opin Saf 16:341–349. https://doi.org/10.1080/14740338.2017.1276561

    Article  CAS  Google Scholar 

  9. Lilja M, Mandić M, Apró W, Melin M, Olsson K, Rosenborg S, Gustafsson T, Lundberg TR (2018) High-doses of anti-inflammatory drugs compromise muscle strength and hypertrophic adaptations to resistance training in young adults. Acta Physiol 222:e12948. https://doi.org/10.1111/apha.12948

    Article  CAS  Google Scholar 

  10. Robertson VJ, Baker KG (2001) A review of therapeutic ultrasound: effectiveness studies. Phys Ther 81:1339–1350

    Article  CAS  Google Scholar 

  11. Enwemeka CS (1989) The effects of therapeutic ultrasound on tendon healing: a biomechanical study. Am J Phys Med Rehabil 68:283–287. https://doi.org/10.1097/00002060-198912000-00005

    Article  CAS  PubMed  Google Scholar 

  12. Ramirez A, Schwane JA, McFarland C, Starcher B (1997) The effect of ultrasound on collagen synthesis and fibroblast proliferation in vitro. Med Sci Sports Exerc 29:326–332. https://doi.org/10.1097/00005768-199703000-00007

    Article  CAS  PubMed  Google Scholar 

  13. Fyfe MC, Chahl LA (1982) Mast cell degranulation: a possible mechanism of action of therapeutic ultrasound. Ultrasound Med Biol 8(Suppl 1):62

    Google Scholar 

  14. Young SR, Dyson M (1990) The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol 16:262–269. https://doi.org/10.1016/0301-5629(90)90005-w

    Article  Google Scholar 

  15. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Moscow) 69:81–90. https://doi.org/10.1023/b:biry.0000016356.93968.7e

    Article  CAS  Google Scholar 

  16. Casalechi HL, Leal-Junior EC, Xavier M, Silva JA Jr, de Carvalho PT, Aimbire F, Albertini R (2013) Low-level laser therapy in experimental model of collagenase-induced tendinitis in rats: effects in acute and chronic inflammatory phases. Lasers Med Sci 28:989–995. https://doi.org/10.1007/s10103-012-1189-x

    Article  PubMed  Google Scholar 

  17. Bastos JLN, Lizarelli RFZ, Parizotto NA (2009) Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Phys 19:1925–1931. https://doi.org/10.1134/S1054660X09170022

    Article  CAS  Google Scholar 

  18. Casalechi HL, Nicolau RA, Casalechi VL, Silveira-Júnior L, Paula AMB, Pacheco MTT (2009) The effects of low level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 24:659–665. https://doi.org/10.1007/s10103-008-0607-6

    Article  PubMed  Google Scholar 

  19. Xavier M, de Souza RA, Pires VA, Santos AP, Aimbire F, Silva JÁ Jr, Albertini R, Villaverde AB (2014) Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats. Lasers Med Sci 29:85–90. https://doi.org/10.1007/s10103-013-1280-y

    Article  PubMed  Google Scholar 

  20. Kerppers II, de Lima CJ, Fernandes AB, Villaverde AB (2015) Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: immunohistochemical analysis. Lasers Med Sci 30:397–401. https://doi.org/10.1007/s10103-014-1668-3

    Article  PubMed  Google Scholar 

  21. Sorbellini E, Rucco M, Rinaldi F (2018) Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update. Lasers Med Sci 33:431–1439. https://doi.org/10.1007/s10103-018-2584-8

    Article  Google Scholar 

  22. Langella LG, Casalechi HL, Tomazoni SS, Johnson DS, Albertini R, Pallotta RC, Marcos RL, De Carvalho PTC, Leal-Junior ECP (2018) Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med Sci 33:1933–1940. https://doi.org/10.1007/s10103-018-2558-x

    Article  PubMed  Google Scholar 

  23. Martignago CCS, Tim CR, Assis L, Da Silva VR, Santos ECBD, Vieira FN, Parizotto NA, Liebano RE (2020) Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers Med Sci 35:157–164. https://doi.org/10.1007/s10103-019-02812-6

    Article  PubMed  Google Scholar 

  24. Pereira PC, de Lima CJ, Fernandes AB, Fernandes FB, Zângaro RA, Villaverde AB (2021) Systemic effects of photobiomodulation on blood components in the treatment of community-acquired pneumonia. Photobiomodul Photomed Laser Surg 40:51–58. https://doi.org/10.1089/photob.2021.0050

    Article  CAS  PubMed  Google Scholar 

  25. Faria ALBS, Conrado LAL, Vanzela LS, Villaverde AB, Munin E (2017) Application of phototherapy for the healing of the navels of neonatal dairy calves. Lasers Med Sci 32:1579–1586. https://doi.org/10.1007/s10103-017-2283-x

    Article  Google Scholar 

  26. Matos AP, Navarro RS, Lombardi I Jr, Brugnera A Jr, Munin E, Villaverde AB (2016) Pre-exercise LED phototherapy (638 nm) prevents grip strength loss in elderly women: a double-blind randomized controlled trial. Isokinet Exerc Sci 24:83–89. https://doi.org/10.3233/IES-15060

    Article  Google Scholar 

  27. Vanin AA, De Marchi T, Tomazoni SS, Tairova O, Casalechi HL, de Carvalho PTC, Bjordal JM, Leal-Junior ECP (2016) Pre-exercise infrared low-level laser therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans, what is the optimal dose? A randomized, double-blind, placebo-controlled clinical trial. Photomed Laser Surg 34:1–10. https://doi.org/10.1089/pho.2015.3992

    Article  CAS  Google Scholar 

  28. de Oliveira AR, Vanin AA, Tomazoni SS, Miranda EF, Albuquerque-Pontes GM, De Marchi T, Dos Santos GV, de Paiva PRV, Imperatori TBG, de Carvalho PTC, Bjordal JM, Leal-Junior ECP (2017) Pre-exercise infrared photobiomodulation therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans: what is the optimal power output? Photomed Laser Surg 35:595–603. https://doi.org/10.1089/pho.2017.4343

    Article  CAS  PubMed  Google Scholar 

  29. Abreu JSS, dos Santos GV, Fonsati L, Marques NR, Ferrarei C (2020) Time–response of photobiomodulation therapy by light-emitting diodes on muscle torque and fatigue resistance in young men: randomized, double-blind, crossover and placebo-controlled study. Photobiomodul Photomed Laser Surg 38:750–757. https://doi.org/10.1089/photob.2020.4813

    Article  CAS  PubMed  Google Scholar 

  30. de Carvalho PT, Leal-Junior EC, Alves AC, Rambo CS, Sampaio LM, Oliveira CS, Albertini R, de Oliveira LV (2012) Effect of low-level laser therapy on pain, quality of life and sleep in patients with fibromyalgia: study protocol for a double-blinded randomized controlled trial. Trials 13:221. https://doi.org/10.1186/1745-6215-13-221

    Article  PubMed Central  Google Scholar 

  31. de CarvalhoCarvalho MERM Jr, Marques AP, de CarvalhoLucio LM, de Oliveira AC, Neto OP, Villaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. Lasers Med Sci 31:1455–1463. https://doi.org/10.1007/s10103-016-2009-5

    Article  Google Scholar 

  32. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361. https://doi.org/10.1007/s12262-011-0393-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tantawy SA, Abdelbasset WK, Kamel DM, Alrawaili SM, Alsubaie SF (2019) Laser photobiomodulation is more effective than ultrasound therapy in patients with chronic nonspecific low back pain: a comparative study. Lasers Med Sci 34:793–800. https://doi.org/10.1007/s10103-018-2665-8

    Article  PubMed  Google Scholar 

  34. Sacco IC, Gomes AA, Otuzi ME, Pripas D, Onodera AN (2009) A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions. J Neurosci Methods 180:133–137. https://doi.org/10.1016/j.jneumeth.2009.02.017

    Article  PubMed  Google Scholar 

  35. Watari R, Sartor CD, Picon AP, Butugan MK, Amorim CF, Ortega NRS, Sacco ICN (2014) Effect of diabetic neuropathy severity classified by a fuzzy model in muscle dynamics during gait. J Neuroeng Rehabil 11:11. https://doi.org/10.1186/1743-0003-11-11

    Article  PubMed  PubMed Central  Google Scholar 

  36. Faul F, Erdfelder E, Lang, AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175–191. Download PDF.

  37. Leotty CLR, Lima MMC, de Araújo FX (2020) Effect of low-level laser therapy on pain and function of patients with shoulder tendinopathy: a systematic review. Fisioter Pesqui 27:210–217. https://doi.org/10.1590/1809-2950/19027827022020

    Article  Google Scholar 

  38. Haslerud S, Magnussen LH, Joensen J, Lopes-Martins RA, Bjordal JM (2015) The efficiency of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int 20:108–125. https://doi.org/10.1002/pri.1606

    Article  PubMed  Google Scholar 

  39. England S, Farrell A, Coppock J, Struthers G (1989) Bacon P (1989) Low power laser therapy of shoulder tendonitis. Scand J Rheumatol 18:427–431. https://doi.org/10.3109/03009748909102106

    Article  CAS  PubMed  Google Scholar 

  40. Thornton AL, McCarty CW, Burgess MJ (2013) effectiveness of low-level laser therapy combined with an exercise program to reduce pain and increase function in adults with shoulder pain: a critically appraised topic. J Sport Rehabil 22:72–78. https://doi.org/10.1123/jsr.22.1.72

    Article  PubMed  Google Scholar 

  41. Gudmundsen J, Vikne J (1987) Effekt av laserbehandling ved epicondylittis lateralis humeri og rotatorcuffsyndrom. Fysioterapeuten 6–10.

  42. Vecchio P, Cave M, King V, Adebajo A, Smith M, Hazleman B (1993) A double-blind study of the effectiveness of low level laser treatment of rotator cuff tendinitis. Br J Rheumatol 32:740–742. https://doi.org/10.1093/rheumatology/32.8.740

    Article  CAS  PubMed  Google Scholar 

  43. Logdberg-Andersson M, Mutzell S, Hazell Å (1997) Low level laser therapy (LLT) of tendinitis and myofasial pains — a randomized, double-blind, controlled study. Laser Ther 9:79–86. https://doi.org/10.5978/islsm.14.0_79

    Article  Google Scholar 

  44. Al-Shenqiti A, Oldham J (2003) The use of low-level laser therapy (LLLT) in the treatment of trigger points that are associated with rotator cuff tendonitis. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 91–101.

  45. Abrisham SMJ, Kermani-Alghoraishi M, Ghahramani R, Jabbari L, Jomeh H, Zare M (2011) Additive effects of low level laser therapy with exercise on subacromial syndrome: a randomised, double-blind, controlled trial. Clin Rheumatol 30:1341–1346. https://doi.org/10.1007/s10067-011-1757-7

    Article  PubMed  Google Scholar 

  46. Eslamian F, Shakouri SK, Ghojazadeh M, Nobari OE, Eftekharsadat B (2012) Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis. Lasers Med Sci 27:951–958. https://doi.org/10.1007/s10103-011-1001-3

    Article  PubMed  Google Scholar 

  47. Otadi K, Hadian MR, Olyaei GR, Jalaie S (2012) The beneficial effects of adding low level laser to ultrasound and exercise in Iranian women with shoulder tendonitis: a randomized clinical trial. J Back Musculoskel Rehabil 25:13–19. https://doi.org/10.3233/BMR-2012-0305

    Article  Google Scholar 

  48. Albertini R, Aimbire F, Villaverde AB, Silva JA Jr, Costa MS (2007) COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm Res 56:228–229. https://doi.org/10.1007/s00011-007-6211-6

    Article  CAS  PubMed  Google Scholar 

  49. Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A Jr, Mittmann J, Silva JA Jr, Costa M (2008) Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 26:19–24. https://doi.org/10.1089/pho.2007.2119

    Article  CAS  PubMed  Google Scholar 

  50. Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ, Jaberzadeh S, Cook J (2014) The pain of tendinopathy: physiological or pathophysiological? Sports Med 44:9–23. https://doi.org/10.1007/s40279-013-0096-z

    Article  PubMed  Google Scholar 

  51. Wong WK, Li MY, Yung PS, Leong HT (2020) The effect of psychological factors on pain, function, and quality of life in patients with rotator cuff tendinopathy: a systematic review. Musculoskelet Sci Pract 47:102173. https://doi.org/10.1016/j.msksp.2020.102173

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

JPSM thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Balbin Villaverde.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the research ethics committee of the Anhembi Morumbi University under Brazil platform protocol CAAE: 91320518.9. 0000.5492 (2018/06/07), and it was registered with the Brazilian Registry of Clinical Trials (ReBEC) under Universal Trial Number (UTN) U1111-1219–3594 (2018/22/08).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.P.S., de Lima, C.J., Fernandes, A.B. et al. Analysis of pain relief and functional recovery in patients with rotator cuff tendinopathy through therapeutic ultrasound and photobiomodulation therapy: a comparative study. Lasers Med Sci 37, 3155–3167 (2022). https://doi.org/10.1007/s10103-022-03584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03584-2

Keywords

Navigation